|
|
Modeling and Grid-Connected Control of Proactive Permanent Magnet Direct-Driven Wind Turbine Based on Energy Storage of Hydrogen |
Kong Lingguo1, Cai Guowei1, Chen Chong1, Xing Liang2 |
1. School of Electrical Engineering Northeast Electric Power University Jilin 132012 China; 2. Changchun Power Supply Company State Grid Jilin Electric Power Supply Company Changchun 130000 China |
|
|
Abstract Regarding the volatility of wind grid-power and high permeability of abandoned wind, this paper establishes a model of permanent magnet direct-driven wind turbine based on hydrogen energy storage, where the proactive permanent magnet direct-driven wind turbine of common dc bus is adopted. A coordination control strategy is hence proposed. Permanent magnet direct-driven wind turbine, alkaline electrolyzer (AE), proton exchange membrane fuel cell (PEMFC) and battery are packed into the dc bus. Electricity is prerequisite for AE to produce hydrogen, and hydrogen is prerequisite for PEMFE to generate electricity. Taken the above two characteristics into consideration, wind power fluctuations are retained and the proportion of abandoned wind is reduced using coordinated control of converter and power management strategy. Thus, grid connection for wind power is realized. The models of active wind generator and control strategy are verified by PMCAD/EMTDC simulation platform, which is conducive to high permeable wind grid-connected.
|
Published: 10 October 2017
|
|
Fund:国家高技术研究发展计划(863计划)(SS2014AA052502),国家自然科学基金(51377017)和吉林省科技发展计划(20140203003SF、 20150411008XH)资助项目 |
|
|
|
[1] 刘泊静. 国网2015年新能源消纳成效与挑战并存[EB/OL]. 北京: 中电新闻网, 2015[2015-12-23]. http://www.cpnn.com.cn/zdyw/201512/t20151223_ 862317.html. [2] 谢长军. 解决弃风限电的思考与建议[N]. 中国电力报, 2016-01-11(1). [3] 米增强, 刘力卿, 余洋, 等. 限电弃风工况下双馈风电机组有功及调频控制策略[J]. 电工技术学报, 2015, 30(15): 80-88. Mi Zengqiang, Liu Liqing, Yu Yang, et al. The control strategy of active power and frequency regulation of DFIG under wind abandon condition[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 80-88. [4] Francisco Díaz-González, Andreas Sumper, Oriol Gomis-Bellmunt, et al. A review of energy storage technologies for wind power applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2154-2171. [5] 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21): 126-135. Cai Guowei, Kong Lingguo, Xue Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21): 126-135. [6] 徐晔, 陈晓宁. 风氢互补发电系统构建初探[J]. 中国工程科学, 2010, 12(11): 83-88. Xu Ye, Chen Xiaoning. A preliminary study on the construction of wind and hydrogen power electric generating system[J]. Engineering Science, 2010, 12(11): 83-88. [7] 袁铁江, 李国军, 张增强, 等. 风电-氢储能与煤化工多能耦合系统设备投资规划优化建模[J]. 电工技术学报, 2016, 31(14): 21-30. Yuan Tiejiang, Li Guojun, Zhang Zengqiang, et al. Optimal modeling on equipment investment planning of wind power-hydrogen energy storage and coal chemical pluripotent coupling system[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(14): 21-30. [8] 颜卓勇, 孔祥威. 非并网风电电解水制氢系统及应用研究[J]. 中国工程科学, 2015, 17(3): 30-34. Yan Zhuoyong, Kong Xiangwei. Research on non-grid-connected wind power water-electrolytic hydrogen production system and its applications[J]. Engineering Science, 2015, 17(3): 30-34. [9] Zhou Tao, François Bruno. Energy management and power control of a hybrid active wind generator for distributed power generation and grid integration[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 95-104. [10] Onar O C, Uzunoglu M, Alam M S. Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system[J]. Journal of Power Sources, 2006, 161(1): 707-722. [11] Zhou Tao, Francois Bruno. Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system[J]. International Journal of Hydrogen Energy, 2009, 34(1): 21-30. [12] Khan M J, Iqbal M T. Dynamic modeling and simulation of a small wind-fuel cell hybrid energy system[J]. Renewable Energy, 2005, 30(3): 421-439. [13] Ona O C, Uzunoglu M, Alam M S. Modeling, control and simulation of an autonomous wind turbine/ photovoltaic/fuel cell/ultra-capacitor hybrid power system[J]. Journal of Power Sources, 2008, 185(2): 1273-1283. [14] 袁铁江, 胡克林, 关宇航, 等. 风电-氢储能与煤化工多能耦合系统及其氢储能子系统的EMR建模[J]. 高电压技术, 2015, 41(7): 2156-2164. Yuan Tiejiang, Hu Kelin, Guan Yuhang, et al. Modeling and simulation of conjoint independent power generation system consisting of power generation by wind energy, solar energy and hydrogen energy[J]. High Voltage Engineering, 2015, 41(7): 2156-2164. [15] 方世杰, 邵志芳, 张存满. 并网型风电耦合制氢系统经济性分析[J]. 能源技术经济, 2012, 24(3): 39-43. Fang Shijie, Shao Zhifang, Zhang Cunman. Economic analysis on on-grid wind power coupling with hydrogen-production system[J]. Energy Technology and Economics, 2012, 24(3): 39-43. [16] 王振树, 刘岩, 雷鸣, 等. 基于Crowbar的双馈机组风电场等值模型与并网仿真分析[J]. 电工技术学报, 2015, 30(4): 44-51. Wang Zhenshu, Liu Yan, Lei Ming, et al. Doubly-fed induction generator wind farm aggregated model based on crowbar and integration simulation analysis[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 44-51. [17] Haruni A M O, Negnevitsky M, Haque M E, et al. A novel operation and control strategy for a standalone hybrid renewable power system[J]. IEEE Transa- ctions on Sustainable Energy, 2013, 4(2): 402-413. [18] Niknam T, Kavousi-Fard A, Ostadi A. Impact of hydrogen production and thermal energy recovery of PEMFCPPs on optimal management of renewable microgrids[J]. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1190-1197. [19] de Cerio Mendaza I D, Bak-Jensen B, Chen Zhe. Alkaline electrolyzer and V2G system DIgSILENT models for demand response analysis in future distribution networks[C]//Proceedings of the Power Tech Conference, Grenoble, France, 2013: 1-8. [20] 蔡国伟, 孔令国, 潘超, 等. 风光储联合发电系统的建模及并网控制策略[J]. 电工技术学报, 2013, 28(9): 196-204. Cai Guowei, Kong Lingguo, Pan Chao, et al. System modeling of Wind-PV-ES hybrid power system and its control strategy for grid-connected[J]. Transa- ctions of China Electrotechnical Society, 2013, 28(9): 196-204. |
|
|
|