|
|
Progress of Theory and Parameter Adjustment for Nonlinear Resistive Field Grading Materials |
He Jinliang, Yang Xiao, Hu Jun |
State Key Laboratory of Control and Simulation of Power System and Generation Equipments Department of Electrical Engineering Tsinghua University Beijing 100084 China |
|
|
Abstract Materials with nonlinear electrical parameters possess field dependent conductivity or permittivity which can vary adaptively with the space electric field distribution. Thus, they can automatically enhance the uniformity of field distribution in insulation dielectrics and can be used to limit local overstress in high voltage apparatus due to concentrated electric field. Recently, domestic and international researchers have manufactured the materials with stable and nice nonlinear characteristics on conductivity, such as composite materials consisting of ZnO microvaristor fillers and insulation matrix. This paper elaborated the theory on design of materials with nonlinear conductivity for resistive field grading in high voltage apparatus. The theory mainly deals with how to determine the parameters of the nonlinear materials according to specific field grading requirements. The development of international researches on the parameter regulation of nonlinear materials during manufacturing process to meet those specific requirements is summarized. Finally, the progress of the nonlinear materials in practical high voltage apparatus is briefly introduced.
|
Received: 10 November 2016
Published: 30 August 2017
|
|
|
|
|
[1] 梁曦东, 陈昌渔, 周远翔. 高电压工程[M]. 北京: 清华大学出版社, 2003. [2] 何金良, 谢竟成, 胡军. 改善不均匀电场的非线性复合材料研究进展[J]. 高电压技术, 2014, 40(3): 637-647. He Jinliang, Xie Jingcheng, Hu Jun. Progress of nonlinear polymer composites for improving nonuni- form electrical fields[J]. High Voltage Engineering, 2014, 40(3): 637-647. [3] Varlow B R, Robertson J, Donnelly K P. Nonlinear fillers in electrical insulating materials[J]. IET Science, Measurement & Technology, 2007, 1(2): 96-102. [4] Donnelly K P, Varlow B R. Nonlinear DC and AC conductivity in electrically insulating composites[J]. Dielectrics and Electrical Insulation, 2003, 10(4): 610-614. [5] Donnelly K, Varlow B R. AC conductivity effects of non-linear fillers in electrical insulation[C]//2000 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Victoria, BC, Canada, 2000: 132-135. [6] Auckland D W, Brown N E, Varlow B R. Non-linear conductivity in electrical insulation[C]//1997. IEEE 1997 Annual Report, Conference on electrical Insulation and Dielectric Phenomena, Minneapolis, USA, 1997: 186-189. [7] Tavernier K, Auckland D W, Varlow B R. Improvement in the electrical performance of electrical insulation by non-linear fillers[C]// Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics, Vasteras, Sweden, 1998: 533-538. [8] Auckland D W, Rashid A, Tavernier K, et al. Stress relief by non-linear fillers in insulating solids[C]// IEEE Annual Report, Conference on Electrical Insulation and Dielectric Phenomena, 1994: 310-315. [9] Lin C C, Lee W S, Sun C C, et al. A varistor-polymer composite with nonlinear electrical-thermal switching properties[J]. Ceramics International, 2008, 34(1): 131-136. [10] Ishibe S, Mori M, Kozako M, et al. A new concept varistor with epoxy/microvaristor composite[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 677- 682. [11] Donzel L, Christen T, Kessler R, et al. Silicone composites for HV applications based on microvari- stors[C]//Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, 2004: 403-406. [12] Yang X, He J, Hu J. Tailoring the nonlinear conducting behavior of silicone composites by ZnO microvaristor fillers[J]. Journal of Applied Polymer Science, 2015, 132(40): 125-130. [13] 胡军, 杨霄, 何金良. 电导及介电自适应调控的复合绝缘材料及其应用[J]. 高电压技术, 2016, 42(9): 1-8. Hu Jun, Yang Xiao, He Jinliang, Composite insulating material with self-adaptively adjusted conductivity/permittivity and its applications[J]. High Voltage Engineering, 2016, 42(9): 1-8. [14] Robertson J, Varlow B R. The AC non-linear permittivity characteristics of barium titanate filled acrylic resin[C]//Proceedings of 7th International Conference on Properties and Applications of Dielectric Materials, Nagoya, Japan, 2003: 761-764. [15] Robertson J, Varlow B R. Non-linear ferroelectric composite dielectric materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 779-790. [16] Virsberg L, Ware P. A new termination for under- ground distribution[J]. IEEE Transactions on Power Apparatus and Systems, 1967, 86(9): 1129-1135. [17] Roberts A. Stress grading for high voltage motor and generator coils[J]. IEEE Electrical Insulation Magazine, 1995, 11(4): 26-31. [18] Rhyner J, Bou-Diab M G. One-dimensional model for nonlinear stress control in cable terminations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1997, 4(6): 785-791. [19] Egiziano L, Tucci V, Petrarca C, et al. A Galerkin model to study the field distribution in electrical components employing nonlinear stress grading materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(6): 765-773. [20] Weida D, Steinmetz T, Clemens M. Electro- quasistatic high voltage field simulations of large scale insulator structures including 2-D models for nonlinear field-grading material layers[J]. IEEE Transactions on Magnetics, 2009, 45(3): 980-983. [21] 胡军, 赵孝磊, 杨霄, 等. 非线性电导材料应力锥改善电缆终端电位分布[J]. 高电压技术, 2017, 43(2): 398-404. Hu Jun, Zhao Xiaolei, Yang Xiao, et al. Composite insulating material with self-adaptively adjusted conductivity/permittivity and its applications[J]. High Voltage Engineering, 2017, 43(2): 398-404. [22] Christen T, Donzel L, Greuter F. Nonlinear resistive electric field grading part 1: theory and simulation[J]. IEEE Electrical Insulation Magazine, 2010, 26(6): 47-59. [23] Glatzreichenbach J, Meyer B, Strumpler R, et al. New low-voltage varistor composites[J]. Journal of Materials Science, 1996, 31(22): 5941-5944. [24] Yang Xiao, Hu Jun, Chen Shuiming, et al. Understanding the percolation characteristics of nonlinear composite dielectrics[J]. Scientific Reports, 2016, doi:10.1038/srep30597. [25] Nettelblad B, Mårtensson E, Önneby C, et al. Two percolation thresholds due to geometrical effects: experimental and simulated results[J]. Journal of Physics D: Applied Physics, 2003, 36(4): 399. [26] Wang Z, Nelson J K, Hillborg H, et al. Graphene oxide filled nanocomposite with novel electrical and dielectric properties[J]. Advanced Materials, 2012, 24(23): 3134-3137. [27] Mori M, Komesu D, Ishibe S, et al. Study on the formation of microvaristor chains in composite varistors and their electrical characteristics[C]//2014 IEEE Electrical Insulation Conference (EIC), Philadelphia, USA, 2014: 483-487. [28] Wang Z, Nelson J K, Hillborg H, et al. Nonlinear conductivity and dielectric response of graphene oxide filled silicone rubber nanocomposites[C]//2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 2012: 40-43. [29] Yang Xiao, Hu Jun, He Jinliang. Adjusting nonlinear characteristics of ZnO-silicone rubber composites by controlling filler's shape and size[C]//2016 IEEE International Conference on Dielectrics (ICD), Montpellier, France, 2016: 313-317. [30] Tian J, Xu R, He H, et al. Influence of ZnO filler size on the nonlinear electrical properties of ZnO ceramic- epoxy composite material[J]. Journal of Materials Science: Materials in Electronics, 2016: 28(7): 5102- 5105. [31] Sedghi A, Noori N R. Comparison of electrical properties of zinc oxide varistors manufactured from micro and nano ZnO powder[J]. Journal of Ceramic Processing Research, 2011, 12(6): 752-755. [32] Wang X, Herth S, Hugener T, et al. Nonlinear electrical behavior of treated ZnO-EPDM nanocom- posites[C]//2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Kansas City, USA, 2006: 421-424. [33] Matsuzaki H, Nakano T, Ando H. Effects of second particles on nonlinear resistance properties of microvaristor-filled composites[C]//2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Montreal, Canada, 2012: 183- 186. [34] Matsuzaki H, Nakano T, Ando H, et al. Electrical properties of composite material containing micro- varistor and semi-conductive whisker[C]//Proceedings of 2014 International Symposium on Electrical Insulating Materials (ISEIM), Niigata, Japan, 2014: 295-298. [35] Martensson E, Nettelbled B, Gafvert U, et al. Electrical properties of field grading materials with silicon carbide and carbon black[C]//Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics, Vasters, Sweden, 1998: 548-552. [36] Mashkouri S, Ghafouri M, Arsalani N, et al. Mechanochemical green synthesis of exfoliated graphite at room temperature and investigation of its nonlinear properties based zinc oxide composite varistors[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(6): 4839-4846. [37] Gaponov A V, Glot A B. Electrical properties of SnO2 based varistor ceramics with CuO addition[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(4): 331-337. [38] Yang X S, Wang Y, Zhao Y. Effect of Dy 2 O 3 and La 2 O 3 on the microstructure and electrical properties of WO 3 ceramics[J]. Materials chemistry and physics, 2006, 98(2): 225-230. [39] Philip J, Kutty T R N. Current switching in semi- conducting LaMn 1-x Mg x O 3+δ [J]. Materials chemistry and physics, 2002, 73(2): 220-226. [40] Li J, Xu T, Li S, et al. Structure and electrical response of CaCu 3 Ti 4 O 12 ceramics: effect of heat treatments at the high vacuum[J]. Journal of Alloys and Compounds, 2010, 506(1): L1-L4. [41] Surthi S, Kotru S, Pandey R K. Low-voltage varistors based on La-Ca-Mn-O ceramics[J]. Materials Letters, 2002, 57(4): 887-893. [42] Yang X, Kim H, Yang L, et al. Composite varistors based on epoxy resin/La 0.8 Sr 0.2 MnO 3 [J]. Journal of Composite Materials, 2014, 48(6): 677-681. [43] Wang X, Nelson J K, Schadler L S, et al. Mechanisms leading to nonlinear electrical response of a nano ρ-SiC/silicone rubber composite[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2010, 17(6): 1687-1696. [44] Nelson P N, Hervig H C. High dielectric constant materials for primary voltage cable terminations[J]. IEEE Transactions on Power Apparatus and Systems, 1984, 103(11): 3211-3216. [45] Mackevich J P, Hoffman J W. Insulation enhance- ment with heat-shrinkable components. III. Shielded power cable[J]. IEEE Electrical Insulation Magazine, 1991, 7(4): 31-40. [46] Wheeler J C G, Gully A M, Baker A E, et al. Novel stress grading systems for converter-fed motors[J]. IEEE Electrical Insulation Magazine, 2007, 1(23): 29-35. [47] Wheeler J C G, Gully A M, Baker A E, et al. Thermal performance of stress grading systems for converter- fed motors[J]. IEEE Electrical Insulation Magazine, 2007, 23(2): 5-11. [48] Önneby C, Mårtensson E, Gafvert U, et al. Electrical properties of field grading materials influenced by the silicon carbide grain size[C]//Proceedings of the IEEE 7th International Conference on Solid Dielectrics, Eindhoven, 2001: 43-45. [49] Sharifi E, Jayaram S H, Cherney E. Temperature and electric field dependence of stress grading on form- wound motor coils[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(1): 264-270. [50] Qi X, Zheng Z, Boggs S. Engineering with nonlinear dielectrics[J]. IEEE Electrical Insulation Magazine, 2004, 20(6): 27-34. [51] Guo W, Wang Y, Zhang R, et al. Research on appli- cation of nonlinear insulation composites in cable termination[C]//2011 IEEE 6th International Forum on Strategic Technology (IFOST), Harbin, China, 2011: 133-136. [52] Argaut P, Luton M H. Dry terminations: applicability to EHV[C]//Proceedings of Jicable, Montereall, France, 1995: 67-70. [53] Tyco catalog. Available: www.tycoelectronics.com. [54] Amerpohl U, Kirchner M, Böttcher B, et al. Dry type outdoor termination with new stress control manage- ment[J]. CIGRE 2002 session, paper, 2002: 21-106. [55] Weida D, Richter C, Clemens M. Design of ZnO microvaristor material stress-cone for cable accesso- ries[J]. IEEE Transactions on Dielectrics and Elec- trical Insulation, 2011, 4(18): 1262-1267. [56] Zhao X, Yang X, Gao L, Li Q, Hu J, He J. Tuning the potential distribution of AC cable terminals by stress cone of nonlinear conductivity material[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017. [57] Wang F, Zhang P, Gao M, et al. Research on the non-linear conductivity characteristics of nano-SiC silicone rubber composites[C]//2013 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Shenzhen, China, 2013: 435-538. [58] Weida D, Böhmelt S, Clemens M. Design of ZnO microvaristor end corona protection for electrical machines[C]//Conference Record of the 2010 IEEE International Symposium on Electrical Insulation (ISEI), San Diego, USA, 2010: 1-4. [59] Abd Rahman R. Investigations of ZnO microvaristor for stress control on polymeric outdoor insulators[D]. Cardiff University, 2012. [60] Abd-Rahman R, Haddad A, Harid N, et al. Stress control on polymeric outdoor insulators using Zinc oxide microvaristor composites[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2012, 19(2): 705-713. [61] Debus J, Hinrichsen V, Seifert J M, et al. Investigation of composite insulators with micro- varistor filled silicone rubber components[C]//2010 10th IEEE International Conference on Solid Dielectrics (ICSD), Potsdam, Germany, 2010: 1-4. [62] Donzel L, Greuter F, Gramespacher H. High voltage bushing with field control material: U.S. Patent 7262367[P]. 2007-08-28. [63] Donzel L, Schuderer J. Nonlinear resistive electric field control for power electronic modules[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 955-959. [64] Wang N Y, Cotton I, Robertson J, et al. Partial discharge control in a power electronic module using high permittivity non-linear dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(4): 1319-1326. [65] Paredes-Olguín M, Gómez-Yáñez C, Espino-Cortés F P, et al. Electric stress grading on bushings of combined instrument transformers using high permi- ttivity polymeric composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(6): 2335-2342. [66] Cherney E A. Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(6): 1108-1115. |
|
|
|