|
|
Battery Energy Storage Control Strategy in Secondary Frequency Regulation Considering Its Action Moment and Depth |
Li Xinran1, Huang Jiyuan2, Chen Yuanyang3, Li Shujuan1, Ouyang Lulu2 |
1. College of Electrical and Information Engineering Hunan University Changsha 410082 China; 2. Grid Hunan Electric Power Corporation Changsha Power Supply Company Changsha 410015 China; 3. State Grid Hunan Electric Power Corporation Changsha 410007 China |
|
|
Abstract A control strategy of battery energy storage system (BESS) is proposed for secondary frequency regulation (SFR). This strategy integrates the advantages of the area control error (ACE) and traditional area regulation requirement (ARR) signal distribution modes. Regarding the two signal distribution modes, the frequency characteristics of regional grids involving BESS are analyzed in complex frequency domain by the sensitivity theory. Thereafter a method to determine the action moments and control modes of BESS is presented. Taken into account the energy limitation of BESS and the ramping constraints of conventional generators in the time domain, a method to determine the action depth of BESS is put forward based on the dynamic available AGC (DAA) indices. Finally, the control strategy of BESS considering its action moments and depth is proposed, and the corresponding implementation process is given. The simulations of step disturbance case from an actual power system are carried out. The results show that the proposed strategy can largely improve the performance of frequency regulation and BESS operation, and can take advantages.
|
Received: 19 December 2015
Published: 30 June 2017
|
|
|
|
|
[1] Prabha Kundur. 电力系统稳定与控制[M]. 北京: 中国电力出版社, 2002. [2] 田书欣, 程浩钟, 曾平良, 等. 基于调频层面的风电弃风分析[J]. 电工技术学报, 2015, 30(7): 18-26. Tian Shuxin, Cheng Haozhong, Zeng Pingliang, et al. Analysis on wind power curtailment at frequency adjustment level[J]. Transactions of China Electro- technical Society, 2015, 30(7): 18-26. [3] 李建林, 田立亭, 来小康. 能源互联网背景下的电力储能技术展望[J]. 电力系统自动化, 2015, 39(23): 15-25. Li Jianlin, Tian Liting, Lai Xiaokang. Outlook of electrical energy storage technologies under energy internet background[J]. Automation of Electric Power Systems, 2015, 39(23): 15-25. [4] 刘世林, 文劲宇, 孙海顺, 等. 风电并网中的储能技术研究进展[J]. 电力系统保护与控制, 2013, 41(23): 145-153. Liu Shilin, Wen Jinyu, Sun Haishun, et al. Progress on applications of energy storage technology in wind power integrated to the grid[J]. Power System Protection and Control, 2013, 41(23): 145-153. [5] 李欣然, 黄际元, 陈远扬, 等. 大规模储能电源参与电网调频研究综述[J]. 电力系统保护与控制, 2016, 44(7): 145-153. Li Xinran, Huang Jiyuan, Chen Yuanyang, et al. Review on large-scale involvement of energy storage in power grid fast frequency regulation[J]. Power System Protection and Control, 2016, 44(7): 145-153. [6] 吴云亮, 孙元章, 徐箭, 等. 基于多变量广义预测理论的互联电力系统负荷-频率协调控制体系[J]. 电工技术学报, 2012, 27(9): 101-107. Wu Yunliang, Sun Yuanzhang, Xu Jian, et al. Coor- dinated load-frequency control system in inter- connected power system based on multivariable generalized predictive control theory[J]. Transactions of China Electrotechnical Society, 2012, 27(9): 101-107. [7] Makarov Y V, Du P W, Kintner-Meyer M C W, et al. Sizing energy storage to accommodate high penetr- ation of variable energy resources[J]. IEEE Transa- ctions on Sustainable Energy, 2012, 3(1): 34-40. [8] 胡泽春, 谢旭, 张放, 等. 含储能资源参与的自动发电控制策略研究[J]. 中国电机工程学报, 2014, 34(29): 5080-5087. Hu Zechun, Xie Xu, Zhang Fang, et al. Research on automatic generation control strategy incorporating energy storage resources[J]. Proceedings of the CSEE, 2014, 34(29): 5080-5087. [9] Jin C L, Lu N, Lu S, et al. A coordinating algorithm for dispatching regulation services between slow and fast power regulating resources[J]. IEEE Transactions on Smart Grid, 2014, 5(2): 1043-1050. [10] 鲍谚, 贾利民, 姜久春, 等. 电动汽车移动储能辅助频率控制策略的研究[J]. 电工技术学报, 2015, 30(11): 115-126. Bao Yan, Jia Limin, Jiang Jiuchun, et al. Research on the control strategy of electric vehicle mobile energy storage in ancillary frequency regulation[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(11): 115-126. [11] Zhong J, He L N, Li C B, et al. Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regula- tion[J]. Applied Energy, 2014, 123(12): 253-262. [12] Cheng Y Z, Tabrizi M, Sahni M, et al. Dynamic available AGC based approach for enhancing utility scale energy storage performance[J]. IEEE Transa- ctions on Smart Grid, 2014, 5(2): 1070-1078. [13] 黄际元, 李欣然, 曹一家, 等. 考虑储能参与快速调频动作时机与深度的容量配置方法[J]. 电工技术学报, 2015, 30(12): 454-464. Huang Jiyuan, Li Xinran, Cao Yijia, et al. Capacity allocation of energy storage system considering its action moment and output depth in rapid frequency regulation[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 454-464. [14] Huang H, Li F X. Sensitivity analysis of load- damping characteristic in power system frequency regulation[J]. IEEE Transactions on Power System, 2013, 28(2): 1324-1335. [15] 麻常辉, 潘志远, 刘超男, 等. 基于自适应下垂控制的风光储微网调频研究[J]. 电力系统保护与控制, 2015, 43(23): 21-27. Ma Changhui, Pan Zhiyuan, Liu Chaonan, et al. Frequency regulation research of wind-PV-ES hybrid micro-grid system based on adaptive droop control[J]. Power System Protection and Control, 2015, 43(23): 21-27. [16] Ali Pourmousavi S, Hashem Nehrir M. Introducing dynamic demand response in the LFC model[J]. IEEE Transactions on Power System, 2014, 29(4): 1562- 1572. [17] Delille G, Francois B, Malarange G. Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia[J]. IEEE Transactions on Sustainable Energy, 2012, 3(4): 931-939. [18] 翁国庆, 张有兵, 戚军, 等. 多类型电动汽车电池集群参与微网储能的V2G可用容量评估[J]. 电工技术学报, 2014, 29(8): 36-45. Weng Guoqing, Zhang Youbing, Qi Jun, et al. Evaluation for V2G available capacity of battery groups of electric vehicles as energy storage elements in microgrid[J]. Transactions of China Electro- technical Society, 2014, 29(8): 36-45. |
|
|
|