|
|
Partial Discharge Ultrahigh Frequency Signal Denoising Method Based on Generalized S-Transform Modular Time-Frequency Matrix |
Liu Yushun1, Zhou Wenjun1, Li Pengfei1, Wang Yong2, Tian Yan2 |
1.School of Electrical Engineering Wuhan University Wuhan 430072 China; 2.Guangzhou Power Supply Bureau Co. Ltd Guangzhou 510620 China |
|
|
Abstract In order to suppress the noise in the partial discharge (PD) ultrahigh frequency (UHF) signal, a denoising method based on generalized S-transform modular time-frequency matrix is proposed. Maximum local energy method was used to extract the characteristics of periodic narrow-band interference and cancel the interference through the matrix reverse separation based on two-dimension modular time-frequency matrix. In addition, singular value decomposition was used to suppress of Gaussian white noise in the PD signal. The denoising method presented in this paper was applied on the simulation and laboratory measured signals. Compared the denoising results with other four traditional denoising methods, the results show that the method presented in this paper suppressed the noise in the PD UHF signal effectively and retained more characteristics of PD signal. Compared with traditional methods, the denoising results of filed test signal validated the effectiveness of extracting PD signal with higher noise reduction ratio and lower amplitude reduction ratio.
|
Received: 22 January 2016
Published: 12 May 2017
|
|
|
|
|
[1] 律方成, 金虎, 王子建, 等. 主分量稀疏化在 GIS 局部放电特征提取中的应用[J]. 电工技术学报, 2015, 30(8): 282-288. Lü Fangcheng, Jin Hu, Wang Zijian, et al. Principal component sparse and its application in GIS partial discharge feature eextraction[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 282-288. [2] Moore P J, Portugues I E, Glover I A. Partial discharge investigation of a power transformer using wireless wideband radio-frequency measurements[J]. IEEE Transactions on Power Delivery, 2006, 21(1): 528-530. [3] 侯慧娟, 盛戈皞, 姜文娟, 等. 基于信号模型参数辨识的变电站局部放电电磁波信号重构[J]. 高电压技术, 2015, 41(1): 209-216. Hou Huijuan, Sheng Gegao, Jiang Wenjuan, et al. Signal reconstruction for partial discharge electromagnetic wave in substation based on signal model parameters identification[J]. High Voltage Engineering, 2015, 41(1): 209-216. [4] 罗新, 牛海清, 胡日亮, 等. 一种改进的用于快速傅里叶变换功率谱中的窄带干扰抑制的方法[J]. 中国电机工程学报, 2013, 33(12): 167-175. Luo Xin, Niu Haiqing, Hu Riliang, et al. A modified method of suppressing narrow-band interference using fast fourier transform power spectrum[J]. Proceedings of the CSEE, 2013, 33(12): 167-175. [5] 唐炬, 黄江岸, 张晓星, 等. 局部放电在线监测中混频周期性窄带干扰的抑制[J]. 中国电机工程学报, 2010,30(13): 121-127. Tang Ju, Huang Jiang'an, Zhang Xiaoxing, et al. Suppression of the periodic narrow-band noise with mixed frequencies in partial discharge on-line monitoring[J]. Proceedings of the CSEE, 2010,30(13): 121-127. [6] KöPF U, Feser K. Rejection of narrow-band noise and repetitive pulses in on-site PD measurements[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(3): 433-446. [7] 徐剑, 黄成军. 局部放电窄带干扰抑制中改进快速傅里叶变换频域阈值算法的研究[J]. 电网技术, 2004, 28(13): 80-83. Xu Jian, Huang Chengjun. Research on improved fast Fourier transform algorithm applied in suppression of discrete spectral interference in partial discharge signals[J]. Power System Technology, 2004, 28(13): 80-83. [8] Satish L, Nazneen B. Wavelet-based denoising of partial discharge signals buried in excessive noise and interference[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(2): 354-367. [9] 唐炬, 樊雷, 卓然, 等. 用最优谐波小波包变换抑制局部放电混频随机窄带干扰[J]. 中国电机工程学报, 2013, 33(31): 193-201. Tang Ju, Fan Lei, Zhuo Ran, et al. Suppression of the random narrow-band noise with mixed frequencies in partial discharge with the optimal harmonic wavelet packet transform[J]. Proceedings of the CSEE, 2013, 33(31): 193-201. [10] Ma Xia, Zhou Chenke, Kemp I J. Interpretation of wavelet analysis and its application in partial discharge detection[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2002, 9(3): 446-457. [11] 张宇辉, 段伟润, 李天云. 局部放电信号中抑制周期性窄带干扰的逆向分离方法[J]. 电工技术学报, 2015, 30(6): 232-239. Zhang Yuhui, Duan Weirun, Li Tianyun. A reverse separation method of suppressing periodic narrowband noise in partial discharge signal[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 232-239. [12] 吴浩. 基于 S 变换样本熵的输电线路纵联保护新原理[J]. 电力系统保护与控制, 2016, 44(12): 15-22. Wu Hao. A new pilot protection principle based on S-transform sample entropy[J]. Power System Protection and Control, 2016, 44(12): 15-22. [13] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the S transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001. [14] Pinnegar C R, Mansinha L. The S-transform with windows of arbitrary and varying shape[J]. Geophysics, 2003, 68(1): 381-385. [15] 易吉良, 彭建春. 基于广义S变换的短时电能质量扰动信号分类[J]. 电网技术, 2009, 33(5): 22-27. Yi Jiliang, Peng Jianchun. Classification of short-time power quality disturbance signals based on generalized S-transform[J]. Power System Technology, 2009, 33(5): 22-27. [16] 尹柏强, 何怡刚, 朱彦卿. 一种广义S变换及模糊SOM网络的电能质量多扰动检测和识别方法[J]. 中国电机工程学报, 2015, 35(4): 866-872. Yin Baiqiang, He Yigang, Zhu Yanqing. Detection and classification of power quality multi-disturbances based on generalized S-transform and fuzzy SOM neural network[J]. Proceedings of the CSEE, 2015, 35(4): 866-872. [17] 王振浩, 姚艳菊, 陈继开. 基于 SVD 方法的多台配电网静止无功补偿器交互影响分析[J]. 电力系统保护与控制, 2014, 42(7): 103-109. Wang Zhenhao, Yao Yanju, Chen Jikai. Interactions analysis of multiple DSVC controllers based on SVD method[J]. Power System Protection and Control, 2014, 42(7): 103-109. [18] Hou Zujun. Adaptive singular value decomposition in wavelet domain for image denoising[J]. Pattern Recognition Electrics and Electrical Insulation, 2003, 36(8): 1747-1763. [19] Ashtiani M, Shahrtash S. Partial discharge de-noising employing adaptive singular value decomposition[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 775-782. [20] Kanungo T, Mount D M, Netanyahu N S, et al. An efficient K-means clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892. [21] 王永强, 谢军, 律方成. 基于改进量子粒子群优化稀疏分解的局放信号去噪方法[J]. 电工技术学报, 2015, 30(12): 320-329. Wang Yongqiang, Xie Jun, Lü Fangcheng. PD signal denoising method based on improved quantum-behaved particle swarm optimization sparse decomposition[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 320-329. |
|
|
|