|
|
Experiment and Simulation on the Discharge Modality of Atmospheric Pressure Plasma Jets in Argon Based on Coaxial Straight Tube and Inverted Tapered Tube |
Ren Fuqiang1, Ji Shengchang1, Zhu Lingyu1, Hao Zhiyuan2, Lu weifeng1, Li Xining1 |
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China; 2. DC Technology Consultancy Centre of State Power Economic Research Institute Beijing 102209 China |
|
|
Abstract In this paper, the Ar atmospheric pressure plasma jet (APPJ) generated with coaxial straight tube and inverted tapered tube was experimentally investigated at first, and then the Ar mole fraction distribution inside both tubes was simulated numerically with two-dimensional axis-symmetrical models. The continuity equation, Navier-Stokes equations, k-ε turbulence equation and species mass transportation equation were coupled and solved. The results showed that, in laminar flow, the discharge developed along the inner wall of straight tube unsteadily, but along the central axis of tapered tube stably. Compared with straight tube, the tapered tube could improve Ar mole fraction distribution in laminar flow. A thin layer, composed of air and argon with low fraction, hindered the discharge along the inner surface, which maintained the stability of the discharge. While the argon was in turbulent flow, due to radial diffusion, the Ar mole fraction distributions inside both tubes were identical, and thus the discharge differed little.
|
Received: 31 August 2016
Published: 02 May 2017
|
|
|
|
|
[1] Winter J, Brandenburg R, Weltmann K D. Atmospheric pressure plasma jets: an overview of devices and new directions[J]. Plasma Sources Science and Technology, 2015, 24(6): 064001. [2] Laimer J, Stori H. Recent advances in the research on non-equilibrium atmospheric pressure plasma jets[J]. Plasma Processes and Polymers, 2007, 4(3): 266-274. [3] Laroussi M, Akan T. Arc-free atmospheric pressure cold plasma jets: areview[J]. Plasma Processes and Polymers, 2007, 4(9): 777-788. [4] Kim K N, Lee S M, Mishra A, et al. Atmospheric pressure plasmas for surface modification of flexible and printed electronic devices: a review[J]. Thin Solid Films, 2016, 598: 315-334. [5] Shao T, Zhou Y X, Zhang C, et al. Surface modification of polymethyl-methacrylate using atmospheric pressure argon plasma jets to improve surface flashover performance in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(3): 1747-1754. [6] 姜慧, 邵涛, 章程, 等. 不同电极间距下纳秒脉冲表面介质阻挡放电分布特性[J]. 电工技术学报, 2017, 32(2): 33-42. Jiang Hui, Shao Tao, Zhang Cheng, et al. Distribution characteristics of nanosecond-pulsed surface dielectric barrier discharge at different electrode gaps[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 33-42. [7] 丁正方, 方志, 许靖. 四氟化碳含量对大气压Ar等离子体射流放电特性的影响[J]. 电工技术学报, 2016, 31(7): 159-165. Ding Zhengfang, Fang Zhi, Xu Jing. Influences of CF 4 content on discharge characteristics of argon plasma jet under atmospheric pressure[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(7): 159-165. [8] Shi X M, Chang Z S, Wu X L, et al. Inactivation effect of argon atmospheric pressure low-temperature plasma jet on murine melanoma cells[J]. Plasma Processes and Polymers, 2013, 10(9): 808-816. [9] 高远, 张帅, 刘峰, 等. 脉冲介质阻挡放电等离子体催化CH 4 直接转化[J]. 电工技术学报, 2017, 32(2): 61-69. Gao Yuan, Zhang Shuai, Liu Feng, et al. Plasma enhanced CH 4 direct conversion in pulsed dielectric barrier discharges[J]. Transactions of China Electro- technical Society, 2017, 32(2): 61-69. [10] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282. Rong Mingzhe, Liu Dingxin, Li Mei, et al. Research status and new progress on the numerical simulation of non-equilibrium plasmas[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282. [11] 方志, 钱晨, 姚正秋. 大气压环环电极结构射流放电模型建立及仿真[J]. 电工技术学报, 2016, 31(4): 218-228. Fang Zhi, Qian Chen, Yao Zhengqiu. The model and simulation studies for ring-ring electrode structure jet discharge at atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 218-228. [12] Kim H C, Iza F, Yang S S, et al. Particle and fluid simulations of low-temperature plasma discharges: benchmarks and kinetic effects[J]. Journal of Physics D: Applied Physics, 2005, 38(19): R283-R301. [13] 刘定新, 李嘉丰, 马致臻, 等. 空气沿面介质阻挡放电中活性粒子成分及其影响因素[J]. 高电压技术, 2016, 42(2): 421-427. Liu Dingxin, Li Jiafeng, Ma Zhizhen, et al. Reactive species in surface micro-discharge in air and their influencing factors[J]. High Voltage Engineering, 2016, 42(2): 421-427. [14] Shi J J, Kong M G. Mechanisms of the alpha and gamma modes in radio-frequency atmospheric glow discharges[J]. Journal of Applied Physics, 2005, 97(2): 023306. [15] 邵先军, 张冠军, 詹江杨, 等. 气体流速对大气压氩气等离子体射流影响的实验与仿真[J]. 高电压技术, 2011, 37(6): 1499-1504. Shao Xianjun, Zhang Guanjun, Zhan Jiangyang, et al. Experimental and simulation research on the influence of gas flow rate on Ar APPJ[J]. High Voltage Engineering, 2011, 37(6): 1499-1504. [16] 王瑞雪, 沈苑, 章程, 等. 基于气体动力学和粒子质量输运的氦等离子体射流仿真[J]. 高电压技术, 2015, 41(9): 2903-2909. Wang Ruixue, Shen Yuan, Zhang Cheng, et al. Simulation of helium plasma jet based on gas dynamics and species mass transportation[J]. High Voltage Engineering, 2015, 41(9): 2903-2909. [17] Shao X J, Chang Z S, Mu H B, et al. Experimental and numerical investigation on the interaction between Ar flow channel and Ar plasma jet at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2013, 41(4): 899-906. [18] 占建英, 杨兰兰, 屠彦, 等. 大气压低温等离子体射流器件层流特性的模拟研究[J]. 真空科学与技术学报, 2014, 34(7): 724-730. Zhan Jianying, Yang Lanlan, Tu Yan, et al. Simulation of laminar characteristics of cold atmospheric pressure plasma jet[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(7): 724-730. [19] 郝致远, 高博, 吴波, 等. 基于锥形管的环-板电极结构大气压等离子体射流特性[J]. 高电压技术, 2014, 40(10): 3098-3104. Hao Zhiyuan, Gao Bo, Wu Bo, et al. Characteristics of Ar atmospheric pressure plasma jet generated by ring-plane electrodes with tapered tube[J]. High Voltage Engineering, 2014, 40(10): 3098-3104. [20] Hao Z Y, Ji S C, Liu H, et al. Effect of the grounded electrode on cold aratmospheric pressure plasma jet generated with a simple DBD configuration[J]. IEEE Transactions on Plasma Science, 2014, 42(3): 824- 832. [21] 约翰D安德森. 计算流体力学基础及其应用[M]. 北京: 机械工业出版社, 2008. [22] 朱红钧, 林元华, 谢龙汉. FLUENT流体分析及仿真实用教程[M]. 北京: 人民邮电出版社, 2010. |
|
|
|