|
|
Dynamic Compensation of Contact-Less Power Transmission System Based on Controlled Reactor |
Yang Minsheng1, 2, Wang Yaonan2, Ouyang Honglin2, Zhang Xizheng2 |
1. Hunan College of Arts and Science Changde 415000 China 2. Hunan University Changsha 410082 China |
|
|
Abstract In an inductive coupled power transfer (ICPT) system, static compensation couldn’t give attention to power transfer performance and zero phase between power source current and voltage. To solve this problem, a dynamic compensation method is proposed in this paper. With a controlled reactor and a fixed capacitor connected in parallel, the primary coil is tuned dynamically, and the secondary coil is compensated with a static capacitor. A pair of anti-parallel power switches is used to control current through the controlled reactor to obtain zero phase angle condition. Reactor and capacitor parameters are deduced and optimized with different compensation topologies of the secondary side. PSpice simulations are carried out for dynamic compensation and static compensation respectively. Theory analyze and simulation results indicate that compare with static capacitor compensation, dynamic compensation achieved zero phase angle between power source current and voltage on rating frequency, demand for power supply rating is reduced and power transmission performance is ensured.
|
Received: 16 August 2007
Published: 14 February 2014
|
|
|
|
|
[1] Covic G A, Elliott G, Stielau O H, et al. The design of a contact-less energy transfer system for a people mover system[C]. Proc. of IEEE Int. Conf. on Power System Technology, 2000, 1: 79-84. [2] 欧阳红林, 杨民生, 朱思国, 等.移动电源技术研究[J].湖南大学学报(自然科学版), 2006, 33(1): 55-59. Ouyang Hongling, Yang Minsheng, Zhu Siguo, et al. Research on contactless mobile power technology[J]. Journal of Hunan University(Natural Sciences), 2006, 33(1): 55-59. [3] Abe H, Sakamoto H, Harada K. A noncontact charger using a resonant converter with parallel capacitor of the secondary coil[J]. IEEE Transactions on Industry Applications, 2000, 36(2): 444-451. [4] 韩腾, 卓放, 刘涛, 等. 可分离变压器实现的非接触电能传输系统研究[J]. 电力电子技术, 2004, 38(5): 28-29. [5] 武瑛, 严陆光, 黄常纲, 等. 新型无接触电能传输系统的性能分析[J]. 电工电能新技术, 2003, 22(4): 11-13. [6] 张永祥, 田野, 李琳, 等. 松耦合感应电能传输系统的设计[J]. 海军工程大学学报, 2006, 18(1): 30-33. [7] Wang Chwei Sen, Oskar H Stielau, Grant A Covic. Design considerations for a contactless electric vehicle battery charger[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1308-1314 [8] 武瑛, 严陆光, 徐善纲. 新型无接触电能传输系统的稳定性分析[J]. 中国电机工程学报, 2004, 24(5): 63-66. [9] Chwei Sen W, Covic G A, Stielau O H. General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems[C]. Proc. of IEEE IECON, 2001, 2: 1049-1054. [10] Boys J T, Covic G A, Green A W. Stability and control of inductively coupled power transfer systems[J]. IEE of Proc-Electr. Power Application, 2000, 147(1): 37-43. [11] 韩腾, 卓放, 闫军凯, 等.非接触电能传输系统频率分叉现象研究[J]. 电工电能新技术, 2005, 24(2): 44-47. [12] Wang Chwei Sen, Grant A Covic, Oskar H Stielau. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems[J]. IEEE Transactions on Industrial Electronics, 2004, 51(1): 148-157. [13] 武瑛, 严陆光, 徐善纲. 运动设备无接触供电系统耦合特性的研究[J]. 电工电能新技术, 2005, 24(3): 5-8. [14] 孙跃, 王智慧, 戴欣, 等. 非接触电能传输系统的频率稳定性研究[J]. 电工技术学报, 2005, 20(11): 56-59. [15] Jason James, John Boys, Grant Covic. A variable inductor based tuning method for ICPT pickups[C]. Proc of IEEE IPEC, 2005, 2: 1142-1146. [16] 陈荣. 动态功率因数补偿研究[J]. 机械制造与自动化, 2002(6): 66-69. |
|
|
|