|
|
Shafting Vibration Research of Wind Power and Thermal Power Bundle Supply Through HVDC |
Li Kuan, Wang Jun, Zhao Binchao, Li Yudun, Liu Meng |
State Grid Shandong Electric Power Research Institute Jinan 250002 China |
|
|
Abstract When the wind turbines and wind generators are two-mass or multi-mass shaft model, the control mode of power electronic equipment at rectifier may introduce negative damping to nearby generators, which could cause torsional vibration. This phenomenon is named sub-synchronous torsional interaction. The stability of wind power system may be improved when the wind power and thermal power bundle supply. However, the shaft system may cause torsional vibration when the system is disturbed. Firstly, this paper researched the mechanism of wind torsional vibration. Secondly, the system transfer function of every nature frequency of the shaft was identified base on total least square-estimation of signal parameters via rotational invariance techniques (TLS-ESPRIT). Finally, the controller was designed that aim at every nature frequency of the shaft base on projective theorem. This paper built the model of wind power and thermal power bundle supply through HVDC base on PSCAD/EMTDC. The simulation results show that supplementary subsynchronous damping controller (SSDC) can restrain sub-synchronous torsional interaction effectively, and the SSDC has the advantages of low order and facilitate project implementation.
|
Received: 29 August 2016
Published: 29 March 2017
|
|
|
|
|
[1] 高本锋, 刘晋, 李忍, 等. 风电机组的次同步控制相互作用研究综述[J]. 电工技术学报, 2015, 30(16): 154-161. Gao Benfeng, Liu Jin, Li Ren, et al. Studies of subsynchronous control interaction in wind turbine generators[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 154-161. [2] 雷亚洲. 与风电并网相关的研究课题[J]. 电力系统自动化, 2003, 27(8): 84-89. Lei Yazhou. Studies on wind farm integration into power system[J]. Automation of Electric Power Systems, 2003, 27(8): 84-89. [3] 汪宁渤. 甘肃酒泉千万千瓦风电基地面临的挑战及应对措施[J]. 电网与清洁能源, 2009, 25(7): 43-47. Wang Ningbo. Challenges and countermeasures of Jiuquan 10 million kilowatts of wind power base in Gansu[J]. Power System and Clean Energy, 2009, 25(7): 43-47. [4] 米增强, 苏勋文, 杨奇逊, 等. 风电场动态等值模型的多机表征方法[J]. 电工技术学报, 2010, 25(5): 162-169. Mi Zengqiang, Su Xunwen, Yang Qixun, et al. Multi-machine representation method for dynamic equivalent model of wind farms[J]. Transactions of China Electrotechnical Society, 2010, 25(5): 162-169. [5] 刘忠义, 刘崇茹, 李庚银. 机械轴系模型对直驱永磁同步风力发电机暂态分析的影响[J]. 电工技术学报, 2016, 31(2): 145-152. Liu Zhongyi, Liu Chongru, Li Gengyin. Influence of shafting models in the transient analysis of wind turbines with permanent magnet synchronous generators[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 145-152. [6] Muyeen S M, Ali M H, Takahashi R, et al. Transient stability enhancement of wind generator by a new logical pitch controller[J]. IEEJ Transactions on Power and Energy, 2006, 126(8): 742-752. [7] Hinrichsen E N, Nolan P J. Dynamics and stability of wind turbine generators[J]. IEEE Transactions on Power Apparatus & Systems, 1982, 101(8): 2640- 2646. [8] 张琛, 李征, 蔡旭, 等. 双馈风电机组轴系扭振的稳定与控制[J]. 电工技术学报, 2015, 30(10): 301- 310. Zhang Chen, Li Zheng, Cai Xu, et al. Stability and control of shaft torsional oscillation for doubly-fed wind power generator[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 301-310. [9] Salman S K, Teo A L J. Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator[J]. IEEE Transactions on Power Systems, 2003, 18(2): 793-802. [10] 晏小彬, 刘天琪, 李兴源, 等. 大型风电场次同步谐振分析[J]. 华东电力, 2012, 40(8): 1328-1333. Yan Xiaobin, Liu Tianqi, Li Xingyuan, et al. Sub- synchronous resonance of large-scale wind farm[J]. East China Electric Power, 2012, 40(8): 1328-1333. [11] 王波, 卢继平, 龚建原, 等. 含双馈机组转子侧附加控制的风电场次同步振荡抑制方法[J]. 电网技术, 2013, 37(9): 2580-2584. Wang Bo, Lu Jiping, Gong Jianyuan, et al. A method to suppress sub-synchronous oscillation of wind farm composed of doubly-fed induction generators with additional rotor side control[J]. Power System Technology, 2013, 37(9): 2580-2584. [12] 栗然, 卢云, 刘会兰, 等. 双馈风电场经串补并网引起次同步振荡机理分析[J]. 电网技术, 2013, 37(11): 3074-3079. Li Ran, Lu Yun, Liu Huilan, et al. Mechanism analysis on subsynchronous oscillation caused by grid-integration of doubly fed wind power generation system via series compensation[J]. Power System Technology, 2013, 37(11): 3074-3079. [13] 谢小荣, 郭锡玖, 吴景龙, 等. 基于电力电子变流器的机端次同步阻尼控制器研究与测试[J]. 中国电机工程学报, 2014, 34(4): 666-671. Xie Xiaorong, Guo Xijiu, Wu Jinglong, et al. Research and test of a generator terminal subsynchronous damping controller based on power electronic converter[J]. Proceedings of the CSEE, 2014, 34(4): 666-671. [14] 赵睿, 李兴源, 刘天琪, 等. 抑制次同步和低频振荡的多通道直流附加阻尼控制器设计[J]. 电力自动化设备, 2014, 34(3): 89-93. Zhao Rui, Li Xingyuan, Liu Tianqi, et al. Design of multi-channel DC supplementary damping controller for subsynchronous and low-frequency oscillation suppression[J]. Electric Power Automation Equipment, 2014, 34(3): 89-93. [15] 赵婉君. 高压直流输电工程技术[M]. 北京: 中国电力出版社, 2004. [16] Kundur P. Power system stability and control[M]. New York: McGraw-hill, 1994. [17] Rouquette S, Najim M. Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 237-245. [18] Ottersten B, Viberg M, Kailath T. Performance analysis of the total least squares ESPRIT algorithm[J]. IEEE Transactions on Signal Processing, 1991, 39(5): 1122-1135. [19] Wise K A, Nguyen T. Optimal disturbance rejection in missile autopilot design using projective controls[J]. Control Systems, 1992, 12(5): 43-49. [20] IEEE Subsynchronous Resonance Working Group. Second benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and Systems, 1985, 104(5): 1057- 1066. [21] Yin C C, Agalgaonkar A P, Muttaqi K M, et al. Subsynchronous torsional interaction behaviour of wind turbine-generator unit connected to a HVDC system[C]//IEEE 36th Annual Conference on Indu- strial Electronics Society, Glendale, 2010: 996-1002. |
|
|
|