|
|
The Discharge Characteristics of Array Micro-Hollow Cathode Triggered by Nanosecond Pulses |
Zhang Chengbo, Liu Kefu, Qiu Jian |
Institute for Electric Light Sources Fudan University Shanghai 200433 China |
|
|
Abstract Array micro-hollow cathode (MHC), composed of multi-hollow with one cathode, is a kind of micro-plasma generator to obtain large-scale, high electron density volume of discharge plasma. Compared with DC operation mode, pulse operation mode for MHC device with ultra-short pulse duration can significantly reduce the impacts of thermal load, thus can increase the current and energy of discharge. In this paper, a pulse discharge for array MHC in Ar is achieved firstly, and its pulsed discharge characteristics are studied using the nanosecond pulse generator designed by our group. Then, its parallel operation is investigated under pulse mode, and its parallel behavior is improved by introducing a pre-trigger concept. At last, an emission spectrum measurement experiment is conducted using optical-fiber emission spectrograph, and the spectrum diagnosis for MHC discharge plasma is carried out to achieve useful plasma parameters.
|
Received: 29 May 2016
Published: 08 February 2017
|
|
|
|
|
[1] Schoenbach, K H, Verhappen R, Tessnow T, et al. Microhollow cathode discharges[J]. Applied Physics Letters, 1996, 68(1): 13-15. [2] Schoenbach, K H, El-Habachi A, Shi W, et al. High- pressure hollow cathode discharges[J]. Plasma Sources Science and Technology, 1997, 6(4): 468- 477. [3] Schoenbach K H, El-Habachi A, Moselhy M M, et al. Microhollow cathode discharge excimer lamps[J]. Physics of Plasmas, 2000, 7(5): 2186-2191. [4] Stark R H. Schoenbach K H. Direct current glow discharges in atmospheric air[J]. Applied Physics Letters, 1999, 74(25): 3770-3772. [5] Shi W, Stark R H, Schoenbach K H. Parallel operation of microhollow cathode discharges[J]. IEEE Transactions on Plasma Science, 1999, 27(1): 16-17. [6] Dufour T, Dussart R, Lefaucheux P, et al. Effect of limiting the cathode surface on direct current microhollow cathode discharge in helium[J]. Applied Physics Letters, 2008, 93(7): 071508. [7] Watanabe J, Ogino A, Nagatsu M. Characteristics of direct current microhollow cathode discharges combined with dielectric barrier discharges as preionizer[J]. Applied Physics Letters, 2007, 91(22): 221507. [8] Spasojevic? D, Cvejic? M, Šišovic? N M, et al. Spectroscopic diagnostics of microhollow gas dis- charge in hydrogen[J]. Journal of Applied Physics, 2012, 111(9): 096103. [9] Lee H J, Park S J, Eden J G. Pulsed microplasmas generated in truncated paraboloidal microcavities: simulations of particle densities and energy flow[J]. Journal of Physics D: Applied Physics, 2012, 45(40): 405201. [10] Martin V, Bauville G, Puech V. Nanosecond pulsed arrays of microdischarges in argon[J]. IEEE Transa- ctions on Plasma Science, 2011, 39(11): 2678-2679. [11] Park S J, Chen K F, Ostrom N P, et al. 40 000 pixel arrays of AC-excited silicon microcavity plasma devices[J]. Applied Physics Letters, 2005, 86(11): 111501. [12] 周俐娜, 王新兵, 赖建军, 等. 微空心阴极放电及其应用[J]. 激光与光电子学进展, 2003, 40(5): 38-42. Zhou Lina, Wang Xinbing, Lai Jianjun, et al. Microhollow cathode discharges and its appli- cation[J]. Laser & Optoelectronics Progress, 2003, 40(5): 38-42. [13] 姚细林, 王新兵, 赖建军. 微空心阴极放电的MonteCarlo模拟研究[J]. 物理学报, 2003, 52(6): 1450-1454. Yao Xilin, Wang Xinbing, Lai Jianjun, et al. Monte Carlo simulation of the electron motion in an Ar microhollow cathode discharge[J]. Acta Physica Sinica, 2003, 52(6): 1450-1454. [14] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟[J]. 物理学报, 2004, 53(10): 3440-3446. Zhou Lina, Wang Xinbing. A fluid model for the simulation of discharges in microhollow cathode[J]. Acta Physica Sinica, 2004, 53(10): 3440-3446. [15] 江超, 王又青. 微空心阴极放电与高压辉光放电等离子体源[J]. 激光与光电子学进展, 2004, 41(8): 39-44. Jiang Chao, Wang Youqing. Microhollow cathode discharge and high-pressure glow discharge plasma sources[J]. Laser & Optoelectronics Progress, 2004, 41(8): 39-44. [16] 江超, 王又青. 微空心阴极放电与准分子光源[J]. 量子电子学报, 2005, 22(2): 142-149. Jiang Chao, Wang Youqing. Microhollow cathode discharge and excimer light source[J]. Chinese Jour- nal of Quantum Electronics, 2005, 22(2): 142-149. [17] 陈炜, 王又青. 微空心阴极放电试验用软开关电源的研究[J]. 红外与激光工程, 2006, 35(2): 244-248. Chen Wei, Wang Youqing. MHCD experiment soft- switching power supply[J]. Infrared and Laser Engineering, 2006, 35(2): 244-248. [18] 夏广庆, 毛根旺, N. Sadeghi. 微空心阴极放电机理及其在电热式推力器中的应用[J]. 宇航学报, 2008, 29(5): 1607-1611. Xia Guangqing, Mao Genwang, Sadeghi N. Research on microhollow cathode discharge for application in electrothermal propulsion[J]. Journal of Astronautics, 2008, 29(5): 1607-1611. [19] 吴亚雄, 王海兴. 微空心阴极内氩等离子体特性的二维数值模拟[J]. 高电压技术, 2015, 41(9): 2965- 2972. Wu Yaxiong, Wang Haixing. Two-dimensional simu- lation of discharge characteristics of argon plasma in microhollow cathode[J]. High Voltage Engineering, 2015, 41(9): 2965-2972. [20] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282. Rong Mingzhe, Liu Dingxing, Li Mei, et al. Research status and new progress on the numerical simulation of non-equilibrium plasmas[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282. [21] Martin V, Bauville G, Fleury M, et al. Exciplex emission induced by nanosecond-pulsed micro- discharge arrays operating at high repetition rate frequency[J]. Plasma Sources Science and Tech- nology, 2012, 21(6): 065001. [22] 周亦骁, 方志, 邵涛. Ar/O 2 和Ar/H 2 O中大气压等离子体射流放电特性的比较[J]. 电工技术学报, 2014, 29(11): 229-238. Zhou Yixiao, Fang Zhi, Shao Tao. Comparison of discharge characteristics of atmospheric pressure plasma jet in Ar/O 2 and Ar/H 2 O mixtures[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 229-238. [23] 吴蓉, 李燕, 朱顺官, 等. 等离子体电子温度的发射光谱法诊断[J]. 光谱学与光谱分析, 2008, 28(4): 731-735. Wu Rong, Li Yan, Zhu Shunguan, et al. Emission spectroscopy diagnostics of plasma electron temper- ature[J]. Spectroscopy and Spectral Analysis, 2008, 28(4): 731-735. [24] Hans-Joachim Kunze. Introduction to Plasma Spec- troscopy[M]. Germany: Springer, 2009. [25] Dong L, Ran J, Mao Z. Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening[J]. Applied Physics Letters, 2005, 86(16): 161501. |
|
|
|