|
|
Transmission Characteristics of Wireless Power System in Series-Parallel Type Considering Mutual Inductance |
Pan Chao, Liu Kaixu, Zheng Yongjian, Cai Guowei, Meng Tao |
1. School of Electrical Engineering Northeast China Dianli University Jilin 132012 China; 2. Electric Power Research Institute State Grid Jilin Electric Power Co. Ltd Changchun 130021 China |
|
|
Abstract The characteristics of the wireless power transmission system are impacted directly by the position change of the transmitting and receiving coils. In this paper, wireless power transmission system based on electromagnetic coupling resonant is established in series-parallel (SP) type. The relationship between the space position and inductance of coils in the transmission system is studied from the viewpoint of electromagnetic field. Considering the mutual inductance, the mathematical model is derived to express the transmission characteristics of the system. By simulating the system operation under different conditions such as displacement and deflection of the coils, the varying regularity of the mutual inductance and transmission efficiency is researched. And their internal relation are concluded. The experimental platform is set up and the correctness of the proposed method is proved by comparing the measured data with simulation results, which provides a reference for the optimal design of the system.
|
Published: 04 January 2017
|
|
Fund:国家高技术研究发展计划(863计划)(SS2014A-A052502)和国家自然科学基金(51507027)资助项目 |
|
|
|
[1] Kurs A, Moffatt R, Soljacic M. Simultaneous midrange power transfer to multiple devices[J]. Applied Physics Letters, 2010, 96(4): 23-30. [2] André K, Aristeidis K, Robert M, et al. Wireless energy transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83-85. [3] 唐治德, 徐阳阳, 赵茂, 等. 耦合谐振式无线电能传输的传输效率最佳频率[J]. 电机与控制学报, 2015, 19(3): 8-13. Tang Zhide, Xu Yangyang, Zhao Mao, et al. Transfer efficiency maximum frequency of wireless power transfer via magnetic resonance coupling[J]. Electric Machines and Control, 2015, 19(3): 8-13. [4] Chen C J, Chu T H, Lin C L, et al. A study of loosely coupled coils for wireless power transfer[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57(7): 536-540. [5] Sample A P, Meyer D A, Smith J R. Analysis, experi- mental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 544-554. [6] 傅文珍, 张波, 丘东元, 等. 自谐振线圈耦合式电能无线传输的最大效率分析与设计[J]. 中国电机工程学报, 2009, 29(18): 21-26. Fu Wenzhen, Zhang Bo, Qiu Dongyuan, et al. Maximum efficiency analysis and design of self-resonance coupling coils for wireless power transmission system [J]. Proceedings of the CSEE, 2009, 29(18): 21-26 . [7] Kim S, Jung D H, Kim J J, et al. High-efficiency PCB- and package-level wireless power transfer inter- connection scheme using magnetic field resonance coupling[J]. IEEE Transactions on Components, Packa- ging and Manufacturing Technology, 2015, 5(7): 863-878. [8] 田子建, 林越, 杨洪文, 等. 具有中继谐振线圈的磁耦合谐振无线电能传输系统[J]. 电工技术学报, 2015, 30(1): 168-174. Tian Zijian, Lin Yue, Yang Hongwen, et al. Magnetic coupling resonance wireless power transmission system with intermediate resonant coil[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 168-174. [9] Wang Bingnan, Yerazunis W, Teo K H. Wireless power transfer: metamaterials and array of coupled resonators[J]. Proceedings of the IEEE, 2013, 101(6): 1359-1368. [10] 杨庆新, 章鹏程, 祝丽花, 等. 无线电能传输技术的关键基础与技术瓶颈问题[J]. 电工技术学报, 2015, 30(5): 1-8. Yang Qingxin, Zhang Pengcheng, Zhu Lihua, et al. Key fundamental problems and technical bottlenecks of the wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 1-8. [11] Cabrera F L, Sousa F R de. Contactless characteriza- tion of a CMOS integrated LC resonator for wireless power transferring[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(7): 475-477. [12] 陈珂睿, 王泽忠, 刘胜南, 等. 非接触式电能传输系统功率及效率影响因素[J]. 电网技术, 2014, 38(3): 807-811. Chen Kerui, Wang Zezhong, Liu Shengnan, et al. Impacting factors on power and efficiency of inductively coupled power transfer system[J]. Power System Technology, 2014, 38(3): 807-811. [13] 张献, 杨庆新, 陈海燕, 等. 电磁耦合谐振式传能系统的频率分裂特性研究[J]. 中国电机工程学报, 2012, 32(9): 167-172. Zhang Xian, Yang Qingxin, Chen Haiyan, et al. Research on characteristics of frequency splitting in electromagnetic coupling resonant power transmission systems[J]. Proceedings of the CSEE, 2012, 32(9): 167-172. [14] Bou E, Sedwick R, Alarcon E. Scalability analysis of SIMO non-radiative resonant wireless power transfer systems based on circuit models[J]. IEEE International Symposium on Circuits and Systems (ISCAS), 2015, 62(10): 2574-2583. [15] Riehl P S, Akram H, Yen Y C, et al. Wireless power systems for mobile devices supporting inductive and resonant operating modes[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(3): 780- 790. [16] 李阳, 杨庆新, 闫卓, 等. 磁耦合谐振式无线电能传输方向性分析与验证[J]. 电工技术学报, 2014, 29(2): 197-203. Li Yang, Yang Qingxin, Yan Zhuo, et al. Analysis and validation on characteristic of orientation in wireless power transfer system via coupled magnetic resonances[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 197-203. [17] 黄学良, 吉青晶, 谭林林, 等. 磁耦合谐振式无线电能传输系统串并式模型研究[J]. 电工技术学报, 2013, 28(3): 171-176. Huang Xueliang, Ji Qingjing, Tan Linlin, et al. Study on series-parallel model of wireless power transfer via magnetic resonance coupling[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 171-176. [18] Duong T P, Lee J W. Experimental results of high- efficiency resonant coupling wireless power transfer using a variable coupling method[J]. IEEE Microwave and Wireless Components Letters, 2011, 21(8): 442- 444. |
|
|
|