|
|
Short-Time Power Quality Disturbances Identification Based on Improved Wavelet Energy Entropy and SVM |
Li Gengyin, Wang Honglei, Zhou Ming |
Key Laboratory of Power System Protection and Dynamic Security Monitoring and Control under Ministry of Education North China Electric Power University Beijing 102206 China |
|
|
Abstract This paper proposes an approach to identify short-time power quality disturbances based on improved wavelet energy entropy and support vector machine (SVM). Firstly, the sampled signals are processed by using the multi-scale wavelet resolution and reconstruction. Then, the sliding time window is introduced into algorithm, combined the time domain analysis with frequency domain analysis. The wavelet coefficients of the high frequency regions are selected for feature extraction. The values of the entropy are then calculated according to the improved wavelet energy entropy proposed in this paper as the disturbances features. Furthermore, these features are used as the input vectors of SVM to classify the short-time power quality disturbances. The simulation results show that the proposed method has merits over the conventional wavelet energy entropy approach.
|
Received: 14 August 2007
Published: 13 February 2014
|
|
|
|
|
[1] 林海雪. 现代电能质量的基本问题[J]. 电网技术, 2001, 25(10): 5-12. [2] 崔博文, 任章. 基于傅里叶变换和神经网络的逆变器故障检测与诊断[J]. 电工技术学报, 2006, 21(7): 37-43. [3] 张智远, 李庚银, 冯任卿. 基于小波和进化网络的电能质量动态扰动自动识别[J]. 华北电力大学学报, 2002, 29(3): 1-4. [4] 黄松清, 戴先中. 基于矢量变换的交流传动系统李亚普诺夫函数寻找方法[J]. 电工技术学报, 2002, 17(2): 17-23. [5] 何益宏, 卓放, 周新, 等. 利用瞬时无功功率理论检测谐波电流方法的改进[J]. 电工技术学报, 2003, 18(1): 87-91. [6] 余健明, 张萍, 魏磊, 等. 短时电能质量扰动波形的识别[J]. 西安理工大学学报, 2006, 22(2): 150- 153. [7] 曾智勇, 张学军, 周利华. 快速小波熵在图像检索中的应用[J]. 红外技术, 2005, 27(6): 469-472. [8] Rosso O A, Blanco S, Yordanova J, et al. Wavelet entropy: a new tool for analysis of short duration brain electrical signals[J]. J Neurosci Meth, 2001, 105(1): 65-75. [9] 何正友, 陈小勤, 罗国敏, 等. 基于暂态电流小波熵权的输电线路故障选相方法[J]. 电力系统自动化, 2006, 30(21): 39-43. [10] 何正友, 刘志刚, 钱清泉. 小波熵理论及其在电力系统中应用的可行性探讨[J]. 电网技术, 2004, 28(21): 17-21. [11] 陈小勤, 何正友. 基于小波熵和小波熵权的电能质量扰动识别[J]. 电力科学与工程, 2006(1): 1-5. [12] 占勇, 程浩忠, 丁屹峰, 等. 基于S变换的电能质量扰动支持向量机分类识别[J]. 中国电机工程学报, 2005, 25(4): 51-56. [13] Gaouda A M, Salama M M A, Sultan M K, et al. Power quality detection and classification using wavelet multi-resolution signal decomposition[J]. IEEE Transactions on Power Delivery, 1999, 14(4): 1469-1476. [14] Vapnik V N. The nature of statistical learning theory[M]. 2nd Ed. New York: Springer, 2000. [15] Platt J C, Cristianinai N, et al. Large margin DAGs for multi-classification[J]. Advances in Neural Information Processing Systems, 2000(12): 547-553. |
|
|
|