|
|
Caculation and Influencing Factors Analysis of Conductor Anti-Icing Critical Current Based on Improved Messinger Icing Model |
Liu Guote1,2, Hao Yanpeng1, Yang Lin1, Chen Yan1, Zhong Rongfu1 |
1. School of Electric Power South China University of Technology Guangzhou 510640 China; 2. Dongguan Power Supply Bureau Guangdong Power Grid Corporation Dongguan 523000 China |
|
|
Abstract This paper improves the Messinger icing model by establishing the water film flow model on conductor surface based on the water film flowing on conductor surface during the current anti-icing periods, to obtain the conductor anti-icing critical current under different icing meteorological conditions. The calculation methods about the local collision coefficient (LCC) of super-cooled water droplets, the local heat transfer coefficient (LHTC) on conductor surface and the local freezing coefficient (LFC) of liquid water on conductor surface are determined. It is the first time to calculate the LHTC and LFC on conductor surface. Moreover, the automatic computation of conductor anti-icing critical current is achieved based on the calculated LFC. The results show that the LCC, LHTC and LFC on conductor surface reach their maximum values in the position of conductor stagnation point, where the LFC decreases with increasing the conductor current. Wind speed and temperature are the main factors affecting the anti-icing critical current, while the water content and the diameter size of droplet have little effects on the critical current.
|
Received: 18 August 2014
Published: 13 October 2016
|
|
|
|
|
[1] 肖良成, 李新民, 江俊. 四分裂新月形覆冰导线的气动扰流特性分析[J]. 电工技术学报, 2014, 29(12): 261-268. Xiao Liangcheng, Li Xinmin, Jiang Jun. Study on aerodynamic characteristics of quad-bundled crescent- shape iced-conductors[J]. Transactions of China Electrotechnical Society, 2014, 29(12): 261-268. [2] 张志劲, 黄海舟, 蒋兴良, 等. 复合绝缘子雾凇覆冰厚度预测模型[J]. 电工技术学报, 2014, 29(6): 318-326. Zhang Zhijin, Huang Haizhou, Jiang Xingliang, et al. Model for predicting thickness of rime accreted on composite insulators[J]. Transactions of China Electro- technical Society, 2014, 29(6): 318-326. [3] 许俊, 郭耀杰, 曹珂, 等. 考虑多档导线及绝缘子串影响的覆冰及脱冰输电导线找形分析[J]. 电工技术学报, 2015, 30(13): 87-91. Xu Jun, Guo Yaojie, Cao Ke,et al. Research on form-finding of icing and ice-shedding transmission line considering the influence of multi-span and insulator string[J]. Transactions of China Electro- technical Society, 2015, 30(13): 87-91. [4] Peter Z, Volat C, Farzaneh M, et al. Numerical investigations of a new thermal de-icing method for overhead conductors based on high current impu- lses[J]. IET Generation, Transmission& Distribution, 2008, 2(5): 666-675. [5] Zhang Guixin, Chen Sheng, Xu Shuguang, et al. Application and research of laser de-icing in power system[C]// IEEE International on Power Modulator and High Voltage Conference (IPMHVC), Atlanta, GA, 2010: 470-473. [6] 王艳, 杜志叶, 阮江军. 高压架空输电线路覆冰情况下风险评估研究[J]. 电力系统保护与控制, 2016, 44(10): 84-90. Wang Yan, Du Zhiye, Ruan Jiangjun. Reliability risk evaluation for the high voltage overhead transmission line under icing condition[J]. Power System Pro- tection and Control, 2016, 44(10): 84-90. [7] Liu Gang, Hui Peng, Lehtonen M, et al. De-icing schemes and operations for overhead power line based on shunt capacitor over-compensation method[C]// International Conference on Electrical and Control Engineering (ICECE), Wuhan, 2010: 3525-3528. [8] 许树楷, 赵杰. 电网冰灾案例及抗冰融冰技术综述[J]. 南方电网技术, 2008, 2(2): 1-2. Xu Shukai, Zhao Jie. Summarize the ice disaster accidents and its anti-icing technology in power system[J]. Southward Power System Technology, 2008, 2(2): 1-2. [9] 刘和云, 周迪. 防止导线覆冰临界电流的传热研究[J].中国电力, 2001, 34(3): 12-16. Liu Heyun, Zhou Di. Heat transfer investigation on critical current to prevent wires from icing[J]. China Electric Power, 2001, 34(3): 12-16. [10] Personne P. Ice accretion on wires and anti-icing induced by joule effect[J]. Journal of Applied Meteorology, 1998, 27(2): 104-114. [11] 蒋兴良, 兰强, 毕茂强. 导线临界防冰电流及其影响因素分析[J]. 高电压技术, 2012, 38(5): 1225- 1232. Jiang Xingliang, Lan Qiang, Bi Maoqiang. Analysis on critical anti-icing current of conductor and its impacting factors[J]. High Voltage Engineering, 2012, 38(5): 1225-1232. [12] Peter Z. Modelling and simulation of the ice melting process on a current-carrying electrical conductor[D]. Quebec: Quebec University, 2006. [13] 常士楠, 袁美名, 霍西恒, 等. 某型飞机机翼防冰系统计算分析[J]. 航空动力学报, 2008, 23(6): 1141-1145. Chang Shinan, Yuan Meiming, Huo Xiheng, et al. Investigations of the bleed air anti-icing system for an aircraft wing[J]. Journal of Aerospace Power, 2008, 23(6): 1141-1145 [14] 卜雪琴, 林贵平, 彭又新, 等. 防冰热载荷计算的一种新方法[J]. 航空学报, 2006, 27(2): 208-212. Bu Xueqin, Lin Guiping, Peng Youxin, et al. New method for calculation of anti-icing heat loads[J]. Acta Aeronautica at Astrouantics Sinic, 2006, 27(2): 208-212. [15] 赵勇, 杨新亮. 飞机水平尾翼水滴撞击特性及防冰热荷载计算[J]. 航空动力学报, 2012, 27(11): 2041-2047. Zhao Yong, Yang Xinliang. Impingement characteri- stics and anti-icing heat load calculation of certain tail-plane[J]. Journal of Aerospace Power, 2012, 27(11): 2041-2047. [16] Makkonen L. Modeling power line icing in freezing precipitation[J]. Atmospheric Research, 1998, 46(s1-2): 131-142. [17] Thomas S, Cassoni R. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Aircraft, 1996, 33(5): 841-854. [18] Caruso S. LEWICE droplet trajectory calculations on a parallel computer[R]. American Institute of Aeronautics and Astronautics, 1993. [19] Myers T G, Charpin J P F, Thompson C P. Slowly accretion ice due to supercooled water impacting on a cold surface[J]. Physics of Fluids, 2002, 14(1): 240- 256. [20] Bourgault Y, habashi W G, Beaugendre H. Develop- ment of a shallow water icing model in FENSAP- ICE[R]. AIAA-99-0246, 1999. [21] Myers T G, Charpin J P F, Chapman S J. The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface[J]. Physics of Fluids, 2001, 14(8): 2788-2803. [22] Wright W B. User manual for the NASA Glenn ice accretion code LEWICE version 2.2.2[R]. NASA- CR_2002-211793, 2002. [23] Ping Fu. Modeling and simulation of the ice accretion process on fixed or rotating cylindrical objects by the boundary element method[D]. Quebec: Quebec University, 2004. [24] Bourgault Y, Boutanios Z, Habashi W G. Three- dimensional eulerian approach to droplet impinge- ment simulation using FENSAP-ICE, part 1: model algorithm and validation[J]. Journal of Aircraft, 2000, 37(1): 95-103. |
|
|
|