|
|
Application Progresses of Molecular Simulation Methodology in the Area of High Voltage Insulation |
Li Qingmin1, Huang Xuwei2, Liu Tao2, Yan Jiangyan1, Wang Zhaodong1, Zhang Ying2, Lu Xu1 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source North China Electric Power University Beijing 102206 China; 2. Beijing Key Lab of HV and EMC North China Electric Power University Beijing 102206 China |
|
|
Abstract The paper reviewed three prevailing methodologies in molecular simulation, including quantum chemistry, molecular dynamics, and reactive force field, with a comparative analysis in terms of mathematical principles, development course and applicability. Based on the above reviews, the scientific significance of molecular simulation were elucidated from the perspectives of solid/fluid insulation properties of HV equipment as well as the development of new insulation materials, with a special emphasis on application potentials of the reactive force field in HV engineering. Molecular simulations may be utilized to carry out incisive research on the aging and deterioration processes of dielectric insulation under combined effects of electrical, magnetic, mechanical and thermal stresses, to predict the dielectric insulation properties such as polarization and power loss, as well as to effectively guide the development of new insulation materials. Therefore, molecular simulation presents fundamental methodology and quantitative analyzing technology as to reveal the micro-physical and chemical characteristics of dielectric insulation, and explore the aging and degradation mechanisms of power equipment insulation. However, according to state-of-the-art of the HV and insulation technology discipline, molecular simulation is encouraged to combine with other available computational simulation methodologies, including multi-physics numerical simulation and electromagnetic transient analysis, with a view to establishing an intact sub-discipline of computational high voltage engineering, so as further to serve theoretical boost for engineering practices.
|
Received: 30 January 2016
Published: 12 July 2016
|
|
|
|
|
[1] Leach A, Kier L B. Molecular modeling: principles and applications[J]. Journal of Medicinal Chemistry, 1997, 40(18): 2969. [2] 杨小震. 分子模拟与高分子材料[M]. 北京: 科学出版社, 2002. [3] 朱伟平. 分子模拟技术在高分子领域的应用[J]. 塑料科技, 2002(5): 23-25. Zhu Weiping. Application of molecular simulation technology to macromolecule[J]. Plastics Sci. & Technology, 2002(5): 23-25. [4] 张秀欣. 液态水分子间氢键相互作用的从头分子动力学研究[D]. 天津: 河北工业大学, 2007. [5] 王惠, 杨海峰, 翟高红, 等. 碳源甲基苯热裂解机理的密度泛函动力学研究[J]. 化学学报, 2001, 59(1): 17-21. Wang Hui, Yang Haifeng, Zhai Gaohong, et al. DFT kinetic study of the pyrolysis mechanism of toluene used for carbon matrix[J]. Acta Chimica Sinica, 2001, 59(1): 17-21. [6] 王惠, 翟高红, 杨海峰, 等. 碳前驱体CH 3 ArCH 2 NH 2 热解反应的热力学和动力学DFT研究[J]. 高等学校化学学报, 2001, 22(5): 800-804. Wang Hui, Zhai Gaohong, Yang Haifeng, et al. Studies on thermodynamics and kinetics about pyrolysis mechanism of carbon matrix precursor CH 3 ArCH 2 NH 2 [J]. Chemical Journal of Chinese Universities, 2001, 22(5): 800-804. [7] 郭宗儒. 药物分子设计的模拟原理[J]. 药学学报, 1997, 32(12): 950-955. Guo Zongru. Simulation of molecular drug design principles[J]. Acta Pharmaceutica Sinica, 1997, 32(12): 950-955. [8] 雷蓓蕾. 定量结构活性关系及分子模拟方法在药物设计中的应用研究[D]. 兰州: 兰州大学, 2011. [9] 杨文明. 表面分子印迹聚合物的制备与性能研究及计算机辅助设计[D]. 苏州: 苏州大学, 2013. [10] 陈时锦, 初文江, 孙西芝, 等. 多晶体纳米切削的分子动力学仿真研究[J]. 机械设计与制造, 2006(4): 117-119. Chen Shijin, Chu Wenjiang, Sun Xizhi, el at. Study on polycrystalline molecular dynamics simulation of nanometric cutting[J]. Machinery Design & Manu- facture, 2006(4): 117-119. [11] 周涵, 任强. 分子模拟技术在石油化工领域的应用进展[J]. 计算机与应用化学, 2006, 23(1): 15-19. Zhou Han, Ren Qiang. The application of molecular simulation in petrochemical[J]. Computers and App- lied Chemistry, 2006, 23(1): 15-19. [12] Kachurovskaya N A, Mikheeva E P, Zhidomirov G M. Cluster molecular modeling of strong interaction for VO x /TiO 2 supported catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2002, 178(1): 191-198. [13] Arnon S, Sadot D, Kopeika N S. Simple mathematical models for temporal, spatial, angular, and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations[J]. Journal of Modern Optics, 1994, 41(10): 1955-1972. [14] Martinez-Sanchez M, Pollard J E. Spacecraft electric propulsion-an overview[J]. Journal of Propulsion and Power, 1998, 14(5): 688-699. [15] Beveridge D L, DiCapua F M. Free energy via molecular simulation: applications to chemical and biomolecular systems[J]. Annual Review of Biophy- sics and Biophysical Chemistry, 1989, 18(1): 431- 492. [16] Dror R O, Dirks R M, Grossman J P, et al. Biomo- lecular simulation: a computational microscope for molecular biology[J]. Annual Review of Biophysics, 2012, 41(1): 429-452. [17] Wang M, Liechti K M, Srinivasan V, et al. A hybrid continuum-molecular analysis of interfacial force microscope experiments on a self-assembled mono- layer[J]. Journal of Applied Mechanics, 2006, 73(5): 769-777. [18] Gensterblum Y, Merkel A, Busch A, et al. High- pressure CH 4 and CO 2 sorption isotherms as a function of coal maturity and the influence of moisture[J]. International Journal of Coal Geology, 2013, 118: 45-57. [19] Huang Y L, Merker T, Heilig M, et al. Molecular modeling and simulation of vapor-liquid equilibria of ethylene oxide, ethylene glycol, and water as well as their binary mixtures[J]. Industrial & Engineering Chemistry Research, 2012, 51(21): 7428-7440. [20] Younker J M, Sunkara H B, Bendler H V, et al. Prediction of flex modulus and solubility parameters for environmentally friendly nylon plasticizers by molecular dynamics simulations[C]//248th National Meeting of the American-Chemical-Society, 2014: 248. [21] Levine I N. Quantum chemistry[M]. Upper Saddle River, NJ: Pearson Prentice Hall, 2009. [22] Parr R G. Density functional theory[J]. Annual Review of Physical Chemistry, 1983, 34(1): 631-656. [23] Orio M, Pantazis D A, Neese F. Density functional theory[J]. Photosynthesis Research, 2009, 102(2-3): 443-453. [24] Haile J M. Molecular dynamics simulation[M]. New York: Wiley, 1992. [25] Hansson T, Oostenbrink C, Van Gunsteren W F. Molecular dynamics simulations[J]. Current Opinion in Structural Biology, 2002, 12(2): 190-196. [26] Mooney C Z. Monte Carlo simulation[M]. Thousand Oaks, CA: Sage Publications, 1997. [27] Chin W W, Marcolin B L, Newsted P R. A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study[J]. Information Systems Research, 2003, 14(2): 189-217. [28] Van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. [29] Pulay P. Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules: I. theory[J]. Molecular Physics, 1969, 17(2): 197-204. [30] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864. [31] Gilbert T L. Hohenberg-Kohn theorem for nonlocal external potentials[J]. Physical Review B, 1975, 12(6): 2111. [32] Warren J Hehre. Ab initio molecular orbital theory[M]. New York: Wiley, 1986. [33] Hansen J P, Verlet L. Phase transitions of the Lennard-Jones system[J]. Physical Review, 1969, 184(1): 151-161. [34] Verlet L, Weis J J. Equilibrium theory of simple liquids[J]. Physical Review A, 1972, 5(2): 939. [35] 刘连池. ReaxFF反应力场的开发及其在材料科学中的若干应用[D]. 上海: 上海交通大学, 2012. [36] Girifalco L A, Weizer V G. Application of the Morse potential function to cubic metals[J]. Physical Review, 1959, 114(3): 687. [37] Nakano A, Kalia R K, Nomura K, et al. A divide- and-conquer/cellular-decomposition framework for million-to-billion atom simulations of chemical reactions[J]. Computational Materials Science, 2007, 38(4): 642-652. [38] Van Duin A. ReaxFF-based molecular dynamics studies on reactions at complex material surfaces[C]// APS March Meeting Abstracts, 2013, 1: 5001. [39] Ding J, Zhang L, Zhang Y, et al. A reactive molecular dynamics study of n-heptane pyrolysis at high temperature[J]. The Journal of Physical Chemistry A, 2013, 117(16): 3266-3278. [40] Wang Quande, Wang Jingbo, Li Juanqin, et al. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane[J]. Combustion and Flame, 2011, 158(2): 217-226. [41] 王学磊. 变压器复合故障智能识别与热动力学焓变诊断技术研究[D]. 济南: 山东大学, 2015. [42] Mazeau K, Heux L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose[J]. Journal of Physical Chemistry B, 2003, 107(10): 2394-2403. [43] Chen W, Lickfield G C, Yang C Q. Molecular modeling of cellulose in amorphous state. Part 1: model building and plastic deformation study[J]. Polymer, 2004, 45(3): 1063-1071. [44] Pavilainen S, Róg T, Vattulainen I. Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations[J]. Journal of Physical Chemistry B, 2011, 115(14): 3747-3755. [45] Matthews J F, Bergenstrahle M, Beckham G T, et al. High-temperature behavior of cellulose I[J]. The Journal of Physical Chemistry B, 2011, 115(10): 2155-2166. [46] 廖瑞金, 胡舰, 杨丽君, 等. 基于分子模拟的变压器绝缘纸热老化降解微观机理研究[J]. 高电压技术, 2009, 35(7): 1565-1570. Liao Ruijin, Hu Jian, Yang Lijun, et al. Molecular simulation for thermal degradative micromechanism of power transformer insulation paper[J]. High Voltage Engineering, 2009, 35(7): 1565-1570. [47] 廖瑞金, 杨丽君, 郑含博, 等. 电力变压器油纸绝缘热老化研究综述[J]. 电工技术学报, 2012, 27(5): 1-12. Liao Rujin, Yang Lijun, Zheng Hanbo, et al. Reviews on oil-paper insulation thermal aging in power transformers[J]. Transactions of China Electro- technical Society, 2012, 27(5): 1-12. [48] 廖瑞金, 吴伟强, 聂仕军, 等. 复合热稳定剂对绝缘纸协同抗老化效应的分子模拟研究[J]. 电工技术学报, 2015, 30(10): 330-337. Liao Rujin, Wu Weiqiang, Nie Shijun, et al. Study on the synergistic anti-aging effect of composite thermal stabilizers on the insulation paper by molecular modeling[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 330-337. [49] 王有元, 杨涛, 田苗, 等. 电场对绝缘纸中水分扩散特性的影响[J]. 电工技术学报, 2015, 30(1): 195-203. Wang Youyuan, Yang Tao, Tian Miao, et al. Impact of electric field on the moisture diffusion properties of insulation[J]. Transactions of China Electro- technical Society, 2015, 30(1): 195-203. [50] 闫江燕, 王学磊, 李庆民, 等. 绝缘纸高温裂解的分子动力学模拟研究[J]. 中国电机工程学报, 2015, 35(22): 5941-5949. Yan Jiangyan, Wang Xuwei, Li Qingmin, et al. Molecular dynamics simulation on the pyrolysis of insulating paper[J]. Proceedings of the CSEE, 2015, 35(22): 5941-5949. [51] Zhong Yuhu, Jing Xinli, Wang Shujuan, et al. Behavior investigation of phenolic hydroxyl groups during the pyrolysis of cured phenolic resin via molecular dynamics simulation[J]. Polymer Degra- dation and Stability, 2015, 125: 97-104. [52] Liu X, Li X, Liu J, et al. Study of high density polyethylene (HDPE) pyrolysis with reactive molecular dynamics[J]. Polymer Degradation and Stability, 2014, 104(1): 62-70. [53] Zeng F, Peng C, Liu Y, et al. Reactive molecular dynamics simulations on the disintegration of PVDF, FP-POSS, and their composite during atomic oxygen impact[J]. The Journal of Physical Chemistry A, 2015, 119(30): 8359-8368. [54] Li H, Ren D, Cheng X. The theoretical investigation of the β-crystobalite structure under the effect of electric field[J]. Computational Materials Science, 2015, 96: 306-311. [55] Odegard G M, Jensen B D, Gowtham S, et al. Predicting mechanical response of crosslinked epoxy using ReaxFF[J]. Chemical Physics Letters, 2014, 591: 175-178. [56] Diao Z, Zhao Y, Chen B, et al. ReaxFF reactive force field for molecular dynamics simulations of epoxy resin thermal decomposition with model compound[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104(10): 618-624. [57] Zhang Y M, Li J L, Wang J P, et al. Research on epoxy resin decomposition under microwave heating by using ReaxFF molecular dynamics simulations[J]. RSC Advances, 2014, 4(33): 17083-17090. [58] Valega Mackenzie F O, Thijsse B J. Study of metal/epoxy interfaces between epoxy precursors and metal surfaces using a newly developed reactive force field for alumina-amine adhesion[J]. The Journal of Physical Chemistry C, 2015, 119(9): 4796- 4804. [59] Lu X, Wang X, Li Q, et al. A ReaxFF-based molecular dynamics study of the pyrolysis mech- anism of polyimide[J]. Polymer Degradation and Stability, 2015, 114: 72-80. [60] 韩帅. 频变电-热应力对高频电力变压器绝缘特性的耦合作用机制[D]. 济南: 山东大学, 2015. [61] Rahnamoun A, van Duin A C T. Reactive molecular dynamics simulation on the disintegration of Kapton, POSS polyimide, amorphous silica, and teflon during atomic oxygen impact using the reaxff reactive force-field method[J]. The Journal of Physical Chemistry A, 2014, 118(15): 2780-2787. [62] Lamoureux G, Roux B. Modeling induced polarization with classical drude oscillators: Theory and molecular dynamics simulation algorithm[J]. The Journal of Chemical Physics, 2003, 119(6): 3025- 3039. [63] Yu H, Gunsteren W F V. Accounting for polari- zation in molecular simulation[J]. Computer Physics Communications, 2005, 172(2): 69-85. [64] Yousaf M, Shin D, Ruoff R, et al. Selective tuning of a particular chemical reaction on surfaces through electrical resonance: an ab initio molecular dynamics study[J]. The Journal of Physical Chemistry Letters, 2015, 6(24): 5094-5099. [65] 张科, 成永红, 谢小军, 等. 基于分子模拟技术的聚乙烯介电性能的研究[C]//第十三届全国工程电介质学术会议论文集, 2011: 89-93. [66] McShane C P. Vegetable-oil-based dielectric cool- ants[J]. IEEE Industry Applications Magazine, 2002, 8(3): 34-41. [67] Wang Z, Cotton I, Northcote S. Dissolved gas analysis of alternative fluids for power trans- formers[J]. IEEE Electrical Insulation Magazine, 2007, 5(23): 5-14. [68] Zhang Z, Yan K, Zhang J. ReaxFF molecular dynamics simulations of non-catalytic pyrolysis of triglyceride at high temperatures[J]. RSC Advances, 2013, 3(18): 6401-6407. [69] Zhang Z, Yan K, Zhang J. ReaxFF molecular dynamics simulations of the initial pyrolysis mech- anism of unsaturated triglyceride[J]. Journal of Mole- cular Modeling, 2014, 20(3): 1-9. [70] Zhang Y, Wang X, Li Q, et al. A ReaxFF molecular dynamics study of the pyrolysis mechanism of oleic-type triglycerides[J]. Energy & Fuels, 2015, 29(8): 5056-5068. [71] Thakur Y, Dong R, Lin M, et al. Optimizing nanostructure to achieve high dielectric response with low loss in strongly dipolar polymers[J]. Nano Energy, 2015, 16: 227-234. [72] Zaminpayma E, Nayebi P. Mechanical and electrical properties of functionalized graphene nanoribbon: A study of reactive molecular dynamic simulation and density functional tight-binding theory[J]. Physica B: Condensed Matter, 2015, 459: 29-35. |
|
|
|