|
|
Probabilistic Reliability Assessment of Power System Containing Wind Power Based on Latin Hypercube Sampling |
Jiang Cheng1, Wang Shuo1, Wang Baoqing1, Zhang Jianhua2, Zhao Tianyang2 |
1. State Grid Beijing Fangshan Electric Power company Beijing 100031 China; 2. School of Electrical and Electronic Engineering North China Electric Power University Beijing 102206 China |
|
|
Abstract The reliability of power system is often evaluated through Monte-Carlo (MC) simulation with random sampling, namely MC_RS. But it is inappropriate for the power system with large scale wind power integration, because the sample size is large and the assessment efficiency is low. This paper proposes an improved assessment method by MC_LHS, combined the traditional MC method with LHS (Latin hypercube sampling) method, to improve the coverage of sample values for input spaces of random variables and increase the sampling efficiency. Consequently the integrated assessment method could improve the assessment efficiency and stability, as well as reduce the correlation coefficients of repeated assessment results. The analysis of improved IEEE-RTS 79 reliability test system shows that the proposed assessment method is effective.
|
Received: 17 April 2015
Published: 11 July 2016
|
|
|
|
|
[1] 郭永基. 电力系统可靠性分析[M]. 北京: 清华大学出版社, 2003. [2] 董博, 许晓艳, 马烁, 等. 基于长过程动态仿真的风电接入对系统频率控制影响研究[J]. 电力系统保护与控制, 2014, 42(12): 57-64. Huang Bo, Xu Xiaoyan, Ma Shuo, et al. Influence study of wind power on system frequency control based on long-term dynamic simulation[J]. Power System Protection and Control, 2014, 42(12): 57-64. [3] 蒋文韬, 付立军, 王刚, 等. 直驱永磁风电机组虚拟惯量控制对系统小干扰稳定性影响分析[J]. 电力系统保护与控制, 2015, 43(11): 33-40. Jiang Wentao, Fu Lijun, Wang Gang, et al. Impact of direct-drive permanent magnet wind turbines virtual inertia control on power system small signal stability analysis[J]. Power System Protection and Control, 2015, 43(11): 33-40. [4] 黄学良, 刘志仁, 祝瑞金, 等. 大容量变速恒频风电机组接入对电网运行的影响分析[J]. 电工技术学报, 2010, 25(4): 142-149. Huang Xueliang, Liu Zhiren, Zhu Ruijin, et al. Impact of power system integrated with large capa- city of variable speed constant frequency wind tur- bines[J]. Transactions of China Electrotechnical Society, 2010, 25(4): 142-149. [5] 李大字, 冯园园, 刘展, 等. 风力发电机组可靠性建模与维修策略优化[J]. 电网技术, 2011, 35(9): 122-127. Li Dazi, Feng Yuanyuan, Liu Zhan, et al. Reliability modeling and maintenance strategy optimization for wind power generation sets[J]. Power System Tech- nology, 2011, 35(9): 122-127. [6] 吴义纯, 丁明. 基于蒙特卡罗仿真的风力发电系统可靠性评价[J]. 电力自动化设备, 2004, 24(12): 70-73. Wu Yichun, Ding Ming. Reliability assessment of wind power generation system based on Monte-Carlo simulation[J]. Electric Power Automation Equipment, 2004, 24(12): 70-73. [7] Bowden G J, Barker P R, Shestopal V O, et al. Weibull distribution function and wind power statistics[J]. Control and Decision Wind Engineering, 1983, 7(2): 85-98. [8] 吴义纯, 丁明, 李生虎. 风电场对发输电系统可靠性影响的评估[J]. 电工技术学报, 2004, 19(11): 72-76. Wu Yichun, Ding Ming, Li Shenghu. Reliability assessment of wind farms in generation and trans- mission systems[J]. Transactions of China Electro- technical Society, 2004, 19(11): 72-76. [9] 陈树勇, 戴慧珠, 白晓民, 等. 风电场的发电可靠性模型及其应用[J]. 中国电机工程学报, 2000, 20(3): 26-28. Chen Shuyong, Dai Huizhu, Bai Xiaomin, et al. Reliability model of wind power plants and its app- lication[J]. Proceedings of the CSEE, 2000, 20(3): 26-28. [10] 段玉兵, 龚宇雷, 谭兴国, 等. 基于蒙特卡罗模拟的微电网随机潮流计算方法[J]. 电工技术学报, 2011, 26(1): 274-278. Duan Yubing, Gong Yulei, Tan Xingguo, et al. Pro- babilistic power flow calculation in microgrid based on Monte-Carlo simulation[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 274-278. [11] 吴变桃, 肖登明. 用改进的蒙特卡罗法模拟SF 6 和CO 2 混合气体电子崩参数[J]. 电工技术学报, 2007, 22(1): 13-16. Wu Biantao, Xiao Dengming. An improved Monte Carlo method for simulation of electron swarm parameters of SF 6 and CO 2 gas mixtures[J]. Trans- actions of China Electrotechnical Society, 2007, 22(1): 13-16. [12] 黄殿勋, 张文, 郭萍, 等. 发输电系统可靠性评估的蒙特卡洛改进算法[J]. 电力系统保护与控制, 2010, 38(21): 179-183. Huang Dianxun, Zhang Wen, Guo Ping, et al. The Monte Carlo improved method for reliability evalu- ation of generation and transmission systems[J]. Power System Protection and Control, 2010, 38(21): 179-183. [13] 宋宇, 孙富春, 李庆玲. 移动机器人的改进无迹粒子滤波蒙特卡罗定位算法[J]. 自动化学报, 2010, 36(6): 851-857. Song Yu, Sun Fuchun, Li Qingling. Mobile robot Monte Carlo localization based on improved unscented particle filter[J]. Acta Automatica Sinica, 2010, 36(6): 851-857. [14] 别朝红, 王建华, 王锡凡. 一种减小蒙特卡洛模拟方差的新方法[J]. 中国电力, 1999, 32(12): 41-44. Bie Zhaohong, Wang Jianhua, Wang Xifan. A new method for reducing Monte Carlo simulation variants[J]. Electric Power, 1999, 32(12): 41-44. [15] 郑开逸, 李臣贵, 黄莉, 等. 蒙特卡罗模拟-重要抽样法评估三七含铅的健康风险[J]. 计算机与应用化学, 2010, 27(5): 649-653. Zheng Kaiyi, Li Chengui, Huang Li, et al. Assess- ment of the health risk of lead in Panax Notoginseng with Monte Carlo simulation and important samp- ling[J]. Computers and Applied Chemistry, 2010, 27(5): 649-653. [16] 马俊海, 杨非. 可转换债券蒙特卡罗模拟定价的控制变量改进方法[J]. 系统工程理论与实践, 2009, 29(6): 77-85. Ma Junhai, Yang Fei. Improved control variable methods of Monte Carlo simulation for pricing convertible bonds[J]. Systems Engineering-Theory & Practice, 2009, 29(6): 77-85. [17] Shu Z, Jirutitijaroen P, Leite da Silva A M, et al. Accelerated state evaluation and latin hypercube sequential sampling for composite system reliability assessment[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1692-1700. [18] 张建华, 王昕伟, 蒋程, 等. 基于蒙特卡罗方法的风电场有功出力的概率性评估[J]. 电力系统保护与控制, 2014, 42(3): 82-87. Zhang Jianhua, Wang Xinwei, Jiang Cheng, et al. Probabilistic assessment of wind farm active power based on Monte-Carlo simulation[J]. Power System Protection and Control, 2014, 42(3): 82-87. [19] 孙元章, 吴俊, 李国杰, 等. 基于风速预测和随机规划的含风电场电力系统动态经济调度[J]. 中国电机工程学报, 2009, 29(4): 41-47. Sun Yuanzhang, Wu Jun, Li Guojie, et al. Dynamic economic dispatch considering wind power penetr- ation based on wind speed forecasting and stochastic programming[J]. Proceedings of the CSEE, 2009, 29(4): 41-47. [20] 冯双磊, 刘纯, 王伟胜, 等. 地形复杂的风电场资源评估误差分析方法[J]. 可再生能源, 2009, 27(3): 98-101. Feng Shuanglei, Liu Chun, Wang Weisheng, et al. Study on the evaluation method to errors in esti- mation of power generation of wind farm in the complex terrain[J]. Renewable Energy Resources, 2009, 27(3): 98-101. [21] 杨明明. 大型风电机组故障模式统计分析及故障诊断[D]. 北京: 华北电力大学, 2009. [22] 郭鹏. 风力发电机组夏季高温限功率现象探索[OL]. 北极星电力网新闻中心, 2014-3-18. [23] 辛卫东. 风电机组传动链振动分析与故障特征提取方法研究[D]. 北京: 华北电力大学, 2013. [24] 徐坊降. 中小型风力发电系统设计与并网研究[D]. 济南: 山东大学, 2011. [25] Iman R L, Conover W J. Small sample sensitivity analysis techniques for computer models, with an application to risk assessment[J]. The American Statistician Communications in Statistics: Theory and Methods, 1980, 9(17): 1749-1845. [26] Jirutitijaroen P, Singh C. Comparison of simulation methods for power system reliability indexes and their distributions[J]. IEEE Transactions on Power Systems, 2008, 23(2): 486-493. [27] Jirutitijaroen P, Singh C. Reliability constrained multi-area adequacy planning using stochastic pro- gramming with sample-average approximations[J]. IEEE Transactions on Power Systems, 2008, 23(2): 504-513. [28] Yu H, Chung C Y, Wong K P, et al. Probabilistic load flow evaluation with hybrid latin hypercube sampling and cholesky decomposition[J]. IEEE Transactions on Power Systems, 2009, 24(2): 661-667. [29] Florian A. An efficient sampling scheme: updated latin hypercube sampling[J]. Probabilistic Engineering Mechanics, 1992, 7(2): 123-130. [30] Wong P, Albrecht P, Allan R, et al. The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee[J]. IEEE Transa- ctions on Power Systems, 1999, 14(3): 1010-1020. [31] Abido M A. Optimal power flow using particle swarm optimization[J]. International Journal of Elec- trical Power & Energy Systems, 2002, 24(7): 563- 571. [32] Morales J M, Perez-Ruiz J. Point estimate schemes to solve the probabilistic power flow[J]. IEEE Trans- actions on Power Systems, 2007, 22(4): 1594-1601. |
|
|
|