|
|
Flashover Characteristic of Polluted Silicone Rubber with Different Hydrophobicity |
Dai Hanqi1, Zhao Chenlong2, Liang Jianyu2, Zhou Jun3, Wang Liming2 |
1. State Grid Beijing Electric Power Compangy Beijing 100031 China; 2. Graduate School at Shenzhen Tsinghua University Shenzhen 518055 China; 3. China Electric Power Research Institute Beijing 100192 China |
|
|
Abstract This paper introduces the flashover characteristics of polluted silicone rubber plate samples with different hydrophobic properties. By virtue of quantitative brushing method, samples were polluted by controlling hydophobicity transfer time to obtain different hydrophobic properties . The maximum value of droplet area on the pollution layer stood for the state of surface hydrophobicity. The impacts of hydrophobicity on flashover voltage, pollution resistance and the development of arc were studied. Test results show that flashover voltages of samples increase with the improvement of surface hydrophobicity. A correlation exists between flashover voltage and the maximum value of droplet area. However, deviation increases from hydrophilic state to hydrophobic state. The morphology of droplets has a great effect on arc development. When drops form continuous water film, the number of arc paths is limited and the value of flashover voltage is low. However, when the drops on the surface are spherical and scattered, discharge areas are scattered s and the flashover voltages are high. According to the results of flashover tests and the different patterns of droplets, hydrophilic surface HC7, is subdivided into HC7A, HC7B, HC7C and HC7D respectively. Despite very unobvious hydrophobicity of HC7B, flashover voltages of samples with HC7B are obviously higher than those with totally hydrophilic states, such as HC7C and HC7D. Therefore, if the configuration structure is designed according to the flashover voltage related to the HC7B state, structure height of composite insulators can be shortened with the ensured safety.
|
Received: 19 March 2014
Published: 11 July 2016
|
|
|
|
|
[1] 李立浧, 蒋兴良, 孙才新, 等. ±800kV直流复合绝缘子短样人工污秽闪络特性研究[J]. 中国电机工程学报, 2007, 27(10): 14-19. Li Licheng, Jiang Xingliang, Sun Caixin, et al. Study on pollution flashover performance of short sample of ±800kV UHV DC composite insulators[J]. Pro- ceedings of the CSEE, 2007, 27(10): 14-19. [2] Jiang X, Yuan J, Zhang Z, et al. Study on AC pollution flashover performance of composite insulators at high altitude sites of 2800-4500m[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(1): 123-132. [3] 舒立春, 毛峰, 蒋兴良, 等. 复合绝缘子与瓷和玻璃绝缘子直流污闪特性比较[J]. 中国电机工程学报, 2007, 27(36): 26-30. Shu Lichun, Mao Feng, Jiang Xingliang, et al. Comparison of the DC pollution flashover perfor- mances among composite insulators and porcelain and glass insulators[J]. Proceedings of the CSEE, 2007, 27(36): 26-30. [4] Liang X, Wang S, Fan J, et al. Development of composite insulators in China[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(5): 586-594. [5] 傅观君, 王黎明, 侯镭, 等. ±800kV 特高压直流耐张串应用复合绝缘子的可行性[J]. 中国电机工程学报, 2011, 31(22): 119-125. Fu Guanjun, Wang Liming, Hou Lei, et al. Feasibility of application of composite insulators in ±800 kV UHV DC tension strings[J]. Proceedings of the CSEE, 2011, 31(22): 119-125. [6] 赵锋, 张福增, 杨皓麟, 等. 复合绝缘子憎水性及直流污闪特性的影响因素[J]. 中国电机工程学报, 2009, 29 (1): 107-112. Zhao Feng, Zhang Fuzeng, Yang Haolin, et al. Influence factors of hydrophobicity and DC flashover performance for composite insulators[J]. Proceedings of the CSEE, 2009, 29(1): 107-112. [7] 梁曦东, 李震宇, 周远翔. 交流电晕对硅橡胶材料憎水性的影响[J]. 中国电机工程学报, 2007, 27(27): 19-23. Liang Xidong, Li Zhenyu, Zhou Yuanxiang. Influences of AC corona on hydrophobicity of silicone rubber[J]. Proceedings of the CSEE, 2007, 27(27): 19-23. [8] 屠幼萍, 王倩, 李敏, 等. 臭氧浓度对HTV硅橡胶材料的老化作用[J]. 电工技术学报, 2013, 28(1): 21-28. Tu Youping, Wang Qian, Li min, et al. Influence of ozone concentration on deterioration of HTV silicon rubber[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 21-28. [9] Goto T, Hori Y, Yonemura T, et al. Artificial contamination tests of silicone rubber cylindrical models[C]//IEEE Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials, Xi’an, 2000, 1: 272-275. [10] Zhang F, Wang L, Guan Z, et al. Influence of composite insulator shed design on contamination flashover performance at high altitudes[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(3): 739-744. [11] Dong B, Jiang X, Hu J, et al. Effects of artificial polluting methods on AC flashover voltage of composite insulators[J]. IEEE Transactions on Diele- ctrics and Electrical Insulation, 2012, 19(2): 714-722. [12] Zhang Z, Huang H, Jiang X, et al. Analysis of the pollution accumulation and flashover characteristics of field aged 110kV composite insulators[C]//IEEE Electrical Insulation Conference (EIC), Annapolis, 2011: 120-124. [13] Gutman I, Dernfalk A. Pollution tests for polymeric insulators made of hydrophobicity transfer mate- rials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(2): 384-393. [14] 鲁志伟, 杨秀媛. 硅橡胶憎水迁移机理的研究[J]. 中国电机工程学报, 2001, 21(5): 51-55. Lu Zhiwei, Yang Xiuyuan. A study on hydro- phobicity transfer of silicone rubber[J]. Proceedings of the CSEE, 2001, 21(5): 51-55. [15] Cheng Z X, Liang X D, Zhou Y X, et al. Observation of corona and flashover on the surface of composite insulators[C]//IEEE Power Tech Conference, Bolo- gna, 2003, 2: 1-6. [16] Chen Y, Guan Z, Liang X. Analysis of flashover on the contaminated silicone rubber composite insu- lator[C]//Proceedings of the 5th International Con- ference on Properties and Applications of Dielectric Materials, Seoul, 1997, 2: 914- 917. [17] Bo L, Gorur R S. Modeling flashover of composite insulators under contaminated conditions[C]//IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Cancun, 2011: 559-562. [18] Kordkheili H H, Abravesh H, Tabasi M, et al. Determining the probability of flashover occurrence in composite insulators by using leakage current harmonic components[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(2): 502-512. [19] Zhao S, Jiang X, Zhang Z, et al. Flashover voltage prediction of composite insulators based on the characteristics of leakage current[J]. IEEE Transa- ctions on Power Delivery, 2013, 28(3): 1699-1708. [20] 关志成. 绝缘子及输变电设备外绝缘[M]. 北京: 清华大学出版社, 2006. [21] 蒋兴良, 舒立春, 张永记, 等. 人工污秽下盐/灰密对普通悬式绝缘子串交流闪络特性的影响[J]. 中国电机工程学报, 2006, 26(15): 24-28. Jiang Xingliang, Shu lichun, Zhang Yongji, et al. Influence of ESDD and NSDD on AC flashover characteristic of artificially polluted XP-160 insul- ators[J]. Proceedings of the CSEE, 2006, 26(15): 24-28. [22] 蒋兴良, 陈爱军, 张志劲, 等. 盐密和灰密对 110kV 复合绝缘子闪络电压的影响[J]. 中国电机工程学报, 2006, 26(9): 150-154. Jiang Xingliang, Chen Aijun, Zhang Zhijin, et al. Effect of both salt and non-soluble deposit densities on flashover voltage of 110kV composite insulator[J]. Proceedings of the CSEE, 2006, 26(9): 150-154. [23] 苑吉河, 蒋兴良, 舒立春, 等. 盐/灰密对不同型式绝缘子交流人工污秽闪络特性的影响[J]. 中国电机工程学报, 2007, 27(6): 96-100. Yuan Jihe, Jiang Xingliang, Shu Lichun, et al. Influence of salt/non-soluble deposit density on AC artificial pollution flashover performances of various types insulators[J]. Proceedings of the CSEE, 2007, 27(6): 96-100. [24] Venkataraman S, Gorur R S. Extending the appli- cability of insulator flashover models by regression analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(2): 368-374. [25] Venkataraman S, Gorur R S. Prediction of flashover voltage of non-ceramic insulators under contaminated conditions[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(4): 862-869. [26] Karady G G, Shah M, Brown R L. Flashover mechanism of silicone rubber insulators used for outdoor insulation-I[J]. IEEE Transactions on Power Delivery, 1995, 10(4): 1965-1971. [27] 戴罕奇, 梅红伟, 王黎明, 等. 复合绝缘子弱憎水性状态描述方法Ⅰ—静态接触角法的适用性[J]. 电工技术学报, 2013, 28(8): 34-47. Dai Hanqi, Mei Hongwei, Wang Liming, et al. Description method for unobvious hydrophobic state of composite insulators Ⅰ—usability of contact angle method[J]. Transactions of China Electrotechnical Society, 2013, 28(8): 34-47. |
|
|
|