|
|
A Comparative Study on Icing Morphology and Process of Glaze and Light Rime in Suspension Composite Insulators on Transmission Lines |
Xue Yiwei1, 2, Yang Lin1, Hao Yanpeng1, Gu Yu1, Liu Guote1, Li Licheng1 |
1. School of Electric Power South China University of Technology Guangzhou 510640 China; 2. Guangzhou Power Supply Bureau Co. Ltd Guangzhou 510620 China |
|
|
Abstract Icing morphology is one of the important factors on insulator flashover. Currently, there are no related studies on various types of icing morphologies, their differences, and their causes, and less on microphysical processes of insulator icing morphogenesis. Icing process includes water droplet impacting, capturing and freezing. In this paper, a comparative study on two types of icing such as glaze and light rime on suspension composite insulator, and their differences, based on the monitored images by China southern power grid transmission line disaster (icing) early warning systems. Water droplets collide process with insulators for two types of icing morphologies was simulated via Fluent and the number and density of water droplets colliding on the top surface, the end and the roots of the sheds on the simulated composite insulator were calculated. The freezing process of water drops was investigated through an analysis on micro-meteorological parameters, the reason of icing morphology different was discuss from the drop collide with the insulator process and the drop freezing process.
|
Received: 28 April 2014
Published: 28 April 2016
|
|
|
|
|
[1] 蒋兴良, 易辉. 输电线路覆冰及防护[M]. 北京: 中国电力出版社, 2001. [2] Farzaneh M, Baker T, Bernstorf A, et al. Insulator icing test methods and procedures a position paper prepared by the IEEE task force on insulator icing test methods[J]. IEEE Transaction on Power Delivery, 2003, 18(4): 1503-1515. [3] Kawai M. AC flashover tests at project UHV on ice-coated insulators[J]. IEEE Transactions on Power Apparatus and Systems, 1970, 89(8): 1800-1804. [4] Fujimura T, Naito K, Hasegawa Y, et al. Performance of insulators covered with snow or ice[J]. IEEE Transactions on Power Apparatus and Systems, 1979, 98(5): 1621-1631. [5] Farzaneh M, Kiernicki J. Flashover performance of IEEE standard insulators under iced conditions[J]. IEEE Transactions on Power Delivery, 1997, 12(4): 1602-1613. [6] Khalifa M M, Morris R M. Performance of line insulators under rime ice[J]. IEEE Transactions on Power Application and Systems, 1967, 86(6): 692- 698. [7] 许志海, 贾志东, 关志成, 等. 输电线路绝缘子湿增长覆冰特性及防冰涂料试验研究[J]. 高电压技术, 2011, 37(3): 562-569. Xu Zhihai, Jia Zhidong, Guan Zhicheng, et al. Characteristics of wet growth icing and eperimental investigation of anti-icing material of transmission line insulators[J]. High Voltage Engineering, 2011, 37(3): 562-569. [8] 李庆峰, 范峥, 吴穹, 等. 全国输电线路覆冰情况调研及事故分析[J]. 电网技术, 2008, 32(9): 33-36. Li Qingfeng, Fan Zheng, Wu Qiong, et al. Investi- gation of ice-covered transmission lines and analysis on transmission line failures caused by ice-coating in China[J]. Power System Technology, 2008, 32(9): 33-36. [9] 法赞. 电网的大气覆冰[M]. 北京: 中国电力出版社, 2010. [10] 阳林, 郝艳捧, 黎卫国, 等. 输电线路覆冰与导线温度和微气象参数关联分析[J]. 高电压技术, 2010, 36(3): 775-781. Yang Lin, Hao Yanpeng, Li Weiguo, et al. Relation- ships among transmission line icing, conductor temperature and local meteorology using grey relational analysis[J]. High Voltage Engineering, 2010, 36(3): 775-781. [11] 李鹏, 范建斌, 李武峰, 等. 高压直流输电线路的覆冰闪络特性[J]. 电网技术, 2006, 30(17): 74-78. Li Peng, Fan Jianbin, Li Wufeng, et al. Icing flash- over performance of HVDC transmission lines[J]. Power System Technology, 2006, 30(17): 74-78. [12] 刘春城, 刘佼. 输电线路导线覆冰机理及雨凇覆冰[J]. 高电压技术, 2011, 37(1): 241-248. Liu Chuncheng, Liu Jiao. Ice accretion mechanism and glaze loads model on wires of power trans- mission lines[J]. High Voltage Engineering, 2011, 37(1): 241-248. [13] 张志劲, 蒋兴良, 胡建林, 等. 雪峰山自然环境试验站覆冰试验技术[J]. 高电压技术, 2011, 37(9): 2308-2314. Zhang Zhijin, Jiang Xingliang, Hu Jianlin, et al. Icing testing technology at Xuefeng mountain natural test station[J]. High Voltage Engineering, 2011, 37(9): 2308-2314. [14] Farzaneh M. Ice accretions on high-voltage condu- ctors and insulators and related phenomena[J]. Philosophical Transactions of the Royal Society, 2000, 358(1776): 2971-3005. [15] 陈刚. 覆冰在绝缘子上的形成机理及其防范措施[D]. 沈阳: 沈阳工业大学, 2011. [16] 郝艳捧. 输电线路自然覆冰现场观冰试验报告[R]. 广州: 华南理工大学, 2012. [17] 南方电网技术研究中心, 广东省电力设计院, 浙江海康集团有限公司. 南方电网输电线路灾害(覆冰)预警系统二级主站接入技术报告[R]. 广州: 南方电网技术研究中心, 2009. [18] 李昭廷, 郝艳捧, 李立浧, 等. 利用远程系统的输电线路覆冰厚度图像识别[J]. 高电压技术, 2011, 37(9): 2288-2293. Li Zhaoting, Hao Yanpeng, Li Licheng, et al. Image recognition of ice thickness on transmission lines using remote system[J]. High Voltage Engineering, 2011, 37(9): 2288-2293. [19] 王瑞金, 张凯, 王刚. Fluent技术基础与应用实例[M]. 北京: 清华大学出版社, 2007. [20] Yeuan J J, Liang T, Hamed A. Viscous simulations in a transonic fan using k - ε and algebraic turbulence models[C]//The 36th Aerospace Science Meeting and Exhibit, Reno, 1998: 0932. [21] 温作铭. 基于流体力学的覆冰地区用复合绝缘子伞裙结构研究[D]. 重庆: 重庆大学, 2007. [22] 贵州电力工业局, 贵州省气象科研所. 覆冰文集[Z]. 贵阳: 贵州电力技术编辑部, 1992. [23] 黄筱婷, 戴栋, 李昊, 等. 基于在线监测数据的输电线路覆冰形态研究[J]. 南方电网技术, 2013, 7(1): 76-79. Huang Xiaoting, Dai Dong, Li Hao, et al. The online monitoring data based research of transmission line icing form[J]. Southern Power System Technology, 2013, 7(1): 76-79. [24] 郝艳捧, 闵剑峰, 阳林, 等. 粤北地区架空线路自然覆冰形态现场观测研究[J]. 广东电力, 2013, 26(4): 1-7. Hao Yanpeng, Min Jianfeng, Yang Lin, et al. Study on field observation for natural icing form on over- head lines in northern guangdong area[J]. Guangdong Electric Power, 2013, 26(4): 1-7. [25] 李晓光. 悬式瓷绝缘子覆冰机理及影响因素研究[D]. 北京: 华北电力大学, 2011. |
|
|
|