|
|
Numerical Simulation of Short Gap Streamer Discharge in SF6/N2 Gas Mixtures Based on Euler-Taylor-Galerkin-Flux Corrected Transport Method |
Wang Feng1, Li Min1, Li Meng2, Pi Jianmin1, Xu Songzhi1, Huang Chizhi1 |
1. School of Electrical and Information Engineering Hunan University Changsha 410082 China; 2. Zhumadian Power Supply Company Zhumadian 463000 China |
|
|
Abstract The characteristics of short gap streamer discharge at different stages in 10%~90% SF6/N2 gas mixtures are simulated using particle transport equation and coupled Poisson equation. The spatial distribution of particles in streamer head appears steep gradients. To improve the computing efficiency and reduce numerical diffusion, the non-uniform triangular element mesh method is introduced. The temporal discretization of particle continuity equation is solved by the Euler- Taylor-Galerkin scheme (ETG) discrete, while the discrete equations are solved by the flux corrected transport (FCT) method. In the process of simulation, ionization, recombination, attachment and photoionization are considered in SF6/N2 mixed gas. The electric field intensity between anode plate and cathode plate changes a lot with the electric field distortion by space charge distribution as streamer propagation. The initial condition of streamer discharge of short gap breaks down. The electron concentration of the streamer head is about 1020/m3, and the electric field value in the streamer head is about 114kV/cm. The results show that the photoionization has great influence on streamer formation and propagation, and prove that the ETG-FCT method is valid
|
Received: 24 March 2014
Published: 01 April 2016
|
|
|
|
|
[1] Christophorou L G, Van Brunt R J. SF 6 /N 2 mixtures: basic and HV insulation properties[J]. IEEE Trans- actions on Dielectrics and Electrical Insulation, 1995, 2(5): 952-1003. [2] Moukengue I A, Schurer R, Feser K. The influence of a conducting particle on a spacer on the insulation properties in SF 6 /N 2 mixtures[C]//11th International Symposium on High Voltage Engineering, IEE Conference, London, UK, 1999: 232-235. [3] 孙鹏程, 王帮田, 洪文芳, 等. SF 6 /N 2 混合气体绝缘特性的实验研究[J]. 中国电力, 2012, 45(12): 71-75. Sun Pengcheng, Wang Bangtian, Hong Wenfang, et al. Experimental studies on electrical insulation performances of SF 6 /N 2 gas mixtures[J]. Electric Power, 2012, 45(12): 71-75. [4] 张刘春, 肖登明, 张栋, 等. c-C 4 F 8 /CF 4 替代SF 6 可行性的SST实验分析[J]. 电工技术学报, 2008, 23(6): 14-18. Zhang Liuchun, Xiao Dengming, Zhang Dong, et al. SST experimental analysis on the feasibility of c-C 4 F 8 /CF 4 substituting SF 6 as insulation medium[J]. Transactions of China Electrotechnical Society, 2008, 23(6): 14-18. [5] 汪沨, 肖晓林, 张宪标, 等. 基于PIC法SF 6 /N 2 混合气体中绝缘子沿面放电特性研究[J]. 电工技术学报, 2011, 26(8): 220-226. Wang Feng, Xiao Xiaolin, Zhang Xianbiao, et al. Research on the insulator surface discharge char- acteristics in SF 6 /N 2 gas mixture using PIC method[J]. Transactions of China Electrotechnical Society, 2011, 26(8): 220-226. [6] 汪沨, 李锰, 潘雄峰, 等. 基于FEM-FCT算法的SF 6 /N 2 混合气体中棒-板间隙电晕放电特性的仿真研究[J]. 电工技术学报, 2013, 28(9): 261-267. Wang Feng, li Meng, Pan Xiongfeng, et al. Corona discharge simulations of rod-plate gap in SF 6 /N 2 gas mixtures using FEM-FCT method[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 261- 267. [7] Boris J P, Book D L. Flux-corrected transport I. SHASTA, a fluid transport algorithm that works[J]. Journal Computational Physics, 1973, 11(1): 38-69. [8] 廖瑞金, 伍飞飞, 刘康淋, 等. 棒板电极直流负电晕放电脉冲过程中的电子特性研究[J]. 电工技术学报, 2015, 30(10): 319-329. Liao Ruijin, Wu Feifei, Liu Kanglin, et al. Simulation of characteristics of electrons during a pulse cycle in Bar-Plate DC negative corona discharge[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(10): 319-329. [9] 吴变桃, 肖登明. 用改进的蒙特卡罗法模拟SF 6 和CO 2 混合气体电子崩参数[J]. 电工技术学报, 2007, 22(1): 13-16. Wu Biantao, Xiao Dengming. An improved Monte Carlo method for simulation of electron swarm para- meters of SF 6 and CO 2 gas mixtures[J]. Transactions of China Electrotechnical Society, 2007, 22(1): 13-16. [10] John V, Novo J. On (essentially) non-oscillatory discretizations of evolutionary convection-diffusion equations[J]. Journal of Computational Physics, 2012, 231(4): 1570-1586. [11] 庄池杰, 耿屹楠, 曾嵘. 基于不连续有限元的短间隙气体放电仿真算法及其应用[J]. 高电压技术, 2013, 39(4): 970-978. Zhuang Chijie, Chen Yinan, Zeng Rong. Discon- tinuous galerkin method for short air gap discharge simulations and its applications[J]. High Voltage Engineering, 2013, 39(4): 970-978. [12] Morrow R, Lowke J J. Space-charge effects on drift dominated electron and plasma motion[J]. Journal of Physics D: Applied Physics, 1981, 14(11): 2027-2034. [13] Morrow R. Theory of positive corona in SF 6 due to a voltage impulse[J]. IEEE Transactions on Plasma Science, 1991, 19(2): 398-404. [14] Wu C, Kunhardt E E. Formation and propagation of streamers in N 2 and N 2 -SF 6 mixtures[J]. Physics Review A, 1988, 37(11): 4396-4406. [15] Pfeiffer W, Tong L, Schoen D. Computer simulation of streamer discharge processes in SF 6 and SF 6 /N 2 mixtures[C]//XIV International Conference on Gas Discharges and Their Applications, Liverpool, 2002: 227-230. [16] Georghiou G E, Morrow R, Metaxasan A C. An improved finite-element flux-corrected transport algorithm[J]. Journal of Computational Physics, 1999, 148(2): 605-620. [17] Georghiou G E, Morrow R, Metaxas A C. Two- dimensional, finite-element, flux-corrected transport algorithm for the solution of gas discharge pro- blems[J]. Journal of Physics D: Applied Physics, 2000, 33(19): 2453-2466. [18] Georghiou G E, Morrow R, Metaxas A C. Two- dimensional simulation of streamers using the FE-FCT algorithm[J]. Journal of Physics D: Applied Physics, 2000, 33(3): 27-32. [19] Morrow R, Lowke J J. Streamer propagation in air[J]. Journal of Physics D: Applied Physics, 1997, 30(4): 614-627. [20] 张赟, 曾嵘, 黎小林, 等. 大气中短空气间隙流注放电过程数值仿真[J]. 中国电机工程学报, 2008, 28(28): 6-12. Zhang Yun, Zeng Rong, Li Xiaolin, et al. Numerical simulation on streamer discharge of short air gap of atmospheric air[J]. Proceedings of the CSEE, 2008, 28(28): 6-12. [21] Bourdon A, Pasko V P, Liu N Y, et al. Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations[J]. Plasma Sources Science and Technology, 2007, 16(3): 656-678. [22] Donea J. A Taylor-Galerkin method for convective transport problems[J]. International Journal for Numerical Methods in Engineering, 1984, 20(1): 101- 119. [23] Peraire J, Zienkiewicz O C, Morgan K. Shallow water problems: a general explicit formulation[J]. Inter- national Journal for Numerical Methods in Engin- eering, 1986, 22(3): 547-574. [24] Leveque R J. High-resolution conservative algo- rithms for advection in incompressible flow[J]. Siam Journal on Numerical Analysis, 1996, 33(2): 627- 665. [25] Zalesak S T. Fully multidimensional flux-corrected transport algorithms for fluids[J]. Journal of Com- putational Physics, 1979, 31(3): 335-362. [26] 王湘汉, 汪沨, 邱毓昌. SF 6 /N 2 混合气体流注放电二维动力学模型的计算机仿真[J]. 绝缘材料, 2007, 40(4): 70-73. Wang Xianghan, Wang Feng, Qiu Yuchang. Simul- ation of the dynamic fluid model for the streamer discharge in SF 6 /N 2 gas mixtures[J]. Insulating Materials, 2007, 40(4): 70-73. |
|
|
|