|
|
Cooperative Generation-Load Frequency Control Strategy Accounting for Power Network Constraints |
Liu Meng, Chu Xiaodong, Zhang Wen, Wang Hongtao |
Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education Shandong University Jinan 250061 China |
|
|
Abstract Load of energy storage property can respond to frequency disturbances actively, providing reserve capacity for power system. To make full use of load reserve resources, this paper proposes a cooperative generation-load frequency control strategy accounting for power network constraints. A decentralized control scheme is applied to the load side, which adjusts parameter settings to regulate its power demand in response to frequency measurement signal. Sampling operation states of loads, load aggregation model is identified using ARMAX technique, and power demand changes of load groups are then estimated. A secondary frequency controller is designed on the model prediction control framework, which produces control signals for regulating units by accounting for load side control response. Frequency control aims at keeping power balance between generation and load sides, where power network constraints should be satisfied. Negative impacts of load control on branch power are quantified, and the insecure load nodes are identified to prevent from participating in frequency control. Simulations of New England 10-generator 39-bus system verify the proposed control strategy.
|
Received: 17 February 2014
Published: 01 April 2016
|
|
|
|
|
[1] 尹明, 王成山, 葛旭波, 等. 中德风电发展的比较与分析[J]. 电工技术学报, 2010, 25(9): 157-182. Yin Ming, Wang Chengshan, Ge Xubo, et al. Com- parison and analysis of wind power development between China and Germany[J]. Transactions of China Electrotechnical Society, 2010, 25(9): 157-182. [2] 褚晓东, 李娜, 张文. 气象分区在负荷备用容量评估中的应用[J]. 电力系统保护与控制, 2012, 40(21): 19-24. Chu Xiaodong, Li Na, Zhang Wen. Application of meteorological partition to assessment of reserve capacity from responsive load[J]. Power System Protection and Control, 2012, 40(21): 19-24. [3] 李海英, 宋建成, 李渝曾. 基于可中断负荷和分布式发电机的配电公司多时段能量获取模型[J]. 电工技术学报, 2008, 23(7): 105-111. Li Haiying, Song Jiancheng, Li Yuzeng. A multi- period energy acquisition model for a distribution company based on distributed generation and interruptible load[J]. Transactions of China Electrotechnical Society, 2008, 23(7): 105-111. [4] 胡福年, 汤玉东, 邹云. 需求侧实行峰谷分时电价策略的影响分析[J]. 电工技术学报, 2007, 22(4): 168-174. Hu Funian, Tang Yudong, Zou Yun. Analysis of impacts of TOU price strategy[J]. Transactions of China Electrotechnical Society, 2007, 22(4): 168-174. [5] Callaway D S, Hiskens I A. Achieving controllability of electric loads[J]. Proceedings of the IEEE, 2011, 99(1): 184-199. [6] Perry M, Hartmann C, Hartmann L, et al. 2012 Load impact evaluation for pacific gas and electric com- pany's SmartAC program[R]. San Francisco: Pacific Gas and Electric Company, 2013. [7] Short J A, Infield D G, Freris L L. Stabilization of grid frequency through dynamic demand control[J]. IEEE Transactions on Power Systems, 2007, 22(3): 1284-1293. [8] Xu Z, Qstergaard J, Togeby M. Demand as frequency controlled reserve[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1062-1071. [9] Garcia A M, Bouffard F, Kirschen D S. Decentralized demand-side contribution to primary frequency control[J]. IEEE Transactions on Power Systems, 2011, 26(1): 411-419. [10] Callaway D S. Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy[J]. Energy Conver- sion and Management, 2009, 50(5): 1389-1400. [11] Bashash S, Fathy H K. Modeling and control of aggregate air conditioning loads for robust renewable power management[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1318-1327. [12] Mathieu J L, Koch S, Callaway D S. State estimation and control of electric loads to manage real-time energy imbalance[J]. IEEE Transactions on Power Systems, 2013, 28(1): 430-440. [13] 姚建国, 杨胜春, 王珂, 等. 智能电网“源-网-荷”互动运行控制概念及研究框架[J]. 电力系统自动化, 2012, 36(21): 1-6, 12. Yao Jianguo, Yang Shengchun, Wang Ke, et al. Concept and research framework of smart grid “source- grid-load” interactive operation and control[J]. Auto- mation of Electric Power Systems, 2012, 36(21): 1-6, 12. [14] 赵建宁, 徐武祥, 杨强. 基于AGC的稳定断面潮流控制的设计与实现[J]. 电力系统自动化, 2006, 30(22): 85-88. Zhao Jianning, Xu Wuxiang, Yang Qiang. Design and implementation of active power control for tie lines based on automatic generation control[J]. Automation of Electric Power Systems, 2006, 30(22): 85-88. [15] Malhame R P, Chong C Y. Electric load model synthesis by diffusion approximation of a high-order hybrid-state stochastic system[J]. IEEE Transactions on Automatic Control, 1985, 30(9): 854-860. [16] Li Shuhui, Wunsch D C, Giesselmann M G, et al. Using neural networks to estimate wind turbine power generation[J]. IEEE Transactions on Energy Conver- sion, 2001, 16(3): 276-282. [17] 金群, 李欣然. 遗传算法参数设置及其在负荷建模中的应用[J]. 电力自动化设备, 2006, 26(5): 23-27. Jin Qun, Li Xinran. GA parameter setting and its application in load modeling[J]. Electric Power Auto- mation Equipment, 2006, 26(5): 23-27. [18] 邰能灵, 候志俭, 李涛, 等. 基于小波分析的电力系统短期负荷预测方法[J]. 中国电机工程学报, 2003, 23(1): 45-50. Tai Nengling, Hou Zhijian, Li Tao, et al. New principle based on wavelet transform for power system short-term load forecasting[J]. Proceedings of the CSEE, 2003, 23(1): 45-50. [19] Sinitsyn N A, Kundu S, Backhaus S. Safe protocols for generating power pulses with heterogeneous populations of thermostatically controlled loads[J]. Energy Conver- sion and Management, 2013, 67(3): 297-308. [20] Report I C. Dynamic models for steam and hydro turbines in power system studies[J]. IEEE Transa- ctions on Power Apparatus and Systems, 1973, 92(6): 1904-1915. [21] 李常刚, 刘玉田, 张恒旭, 等. 基于直流潮流的电力系统频率响应分析方法[J]. 中国电机工程学报, 2009, 29(34): 36-41. Li Changgang, Liu Yutian, Zhang Hengxu, et al. Power system frequency response analysis based on the direct current loadflow[J]. Proceedings of the CSEE, 2009, 29(34): 36-41. [22] 刘水平, 刘明波, 谢敏. 应用MPC和轨迹灵敏度技术实现最优协调电压控制[J]. 电力系统保护与控制, 2011, 39(1): 1-6,14. Liu Shuiping, Liu Mingbo, Xie Min. Optimal coordinated voltage control using MPC and trajectory sensitivity technique[J]. Power System Protection and Control, 2011, 39(1): 1-6,14. [23] 周念成, 付鹏武, 王强钢, 等. 基于模型预测控制的两区域互联电网AGC系统研究[J]. 电力系统保护与控制, 2012, 40(22): 46-51. Zhou Niancheng, Fu Pengwu, Wang Qianggang, et al. Research on AGC of two area interconnected power system based on MPC[J]. Power System Protection and Control, 2012, 40(22): 46-51. [24] Venkat A N, Hiskens I A, Rawlings J B, et al. Distributed MPC strategies with application to power system automatic generation control[J]. IEEE Transa- ctions on Control Systems Technology, 2008, 16(6): 1192-1206. [25] 徐泰山, 许剑冰, 鲍颜红, 等. 互联电网预防控制和紧急控制在线预决策系统[J]. 电力系统自动化, 2006, 30(7): 1-4, 36. Xu Taishan, Xu Jianbing, Bao Yanhong, et al. On-line pre-decision based preventive and emergency control system for interconnected power grids[J]. Automation of Electric Power Systems, 2006, 30(7): 1-4, 36. [26] Ledesma P. New England Test System[EB/OL]. [2011-08-03]. http://electrica.uc3m.es/pablole/new_ england.html. [27] 李鹏波, 胡德文, 张纪阳, 等. 系统辨识[M]. 北京: 中国水利水电出版社, 2010. [28] 席裕庚. 预测控制[M]. 北京: 国防工业出版社, 1993. |
|
|
|