|
|
Membrane Computing Based Genetic Algorithm for Dynamic Reconfiguration of Distribution Network with Dividing Time and Considering Electric Vehicles and Wind Turbines |
Wu Hongjian1, 2, Lei Xia1, Liu Bin3, Lu Yang1, Xu Guiyang1 |
1. Key Laboratory of Power Electronic Energy-Saving Technology Equipment Xihua University Chengdu 610039 China; 2. Stage Grid Dazhou Power Supply Company Dazhou 635000 China; 3. Nanping Power Bureau of Fujian Power Grid Corp. Nanping 353000 China |
|
|
Abstract Dynamic reconfiguration with dividing time is becoming more and more important in the distribution network with more new energy. The dynamic reconfiguration model of distribution network with dividing time is established for electric power company, considering the costs of purchasing electricity from wind turbines, stochastic volatility, electric vehicle charging and discharging, and network loss. The final switch combination can be decided by minimum network cost with safe operation in each period. The model reflects the comprehensive effect of wind turbines and different kinds of electric vehicles on grid economy. Equal sections crossover probability selection method is used to overcome a large amount of duplicate solutions in the reconfiguration, and the improved algorithm based on the genetic membrane algorithm (GMA) is presented. The global searching capability of the algorithm is improved. Finally, the effectiveness and correctness of the proposed model and method are verified.
|
Received: 23 December 2013
Published: 03 March 2016
|
|
|
|
|
[1] Peng F Z. Editorial special issue on distributed power generation[J]. IEEE Transactions on Power Electro- nics, 2004, 19(5): 1157-1158. [2] 刘志鹏, 文福拴, 薛禹胜, 等. 计及可入网电动汽车的分布式电源的最优选址和定容[J]. 电力系统自动化, 2011, 35(18): 11-16. Liu Zhipeng, Wen Fushuan, Xue Yusheng, et al. Optimal siting and sizing of distributed generators considering plug-in electric vehicles[J]. Automation of Electric Power Systems, 2011, 35(18): 11-16. [3] 张栋, 张刘春, 傅正财. 配电网络重构的快速支路交换法[J]. 电网技术, 2005, 29(9): 82-88. Zhang Dong, Zhang Liuchun, Fu Zhengcai. A quick branch-exchange algorithm for reconfiguration of distribution networks[J]. Power System Technology, 2005, 29(9): 82-88. [4] 靳晓凌, 赵建国. 基于改进二进制粒子群优化算法的负荷均衡化配电网重构[J].电网技术, 2005, 29(23): 41-43. Jin Xiaoling, Zhao Jianguo. Distribution network reconfiguration for load balancing based on improved binary particle swarm optimization[J]. Power System Technology, 2005, 29(23): 41-43. [5] 张浩, 和敬涵, 薄志谦, 等. 基于动态规划算法的故障恢复重构[J].电工技术学报, 2011, 26(12): 162-167. Zhang Hao, He Jinghan, Bo Zhiqian, et al. Service restoration based on dynamic programming[J]. Trans- actions of China Electrotechnical Society, 2011, 26(12): 162-167. [6] Niknam T. An efficient multi-objective HBMO algorithm for distribution feeder reconfiguration[J]. Expert Systems with Applications, 2011, 38(3): 2878-2887. [7] Abdelaziz A, Mohamed F, Mekhamer S, et al. Distribution system reconfiguration using a modified tabu search algorithm[J]. Electric Power Systems Research, 2010, 80(8): 943-953. [8] 刘健, 徐精求, 董海鹏. 考虑负荷变化的配电网动态优化[J]. 继电器, 2004, 32 (13): 15-19. Liu Jian, Xu Jingqiu, Dong Haipeng. Distribution networks dynamic optimization considering load changes[J]. Relay, 2004, 32 (13): 15-19. [9] 余建明, 王征, 许苗. 考虑负荷变化的配电网动态分时段重构[J]. 高电压技术, 2007, 33(9): 125-128. Yu Jianming, Wang Zheng, Xu Miao. Dynamic reconfiguration of distribution network with dividing time and considering load changes[J]. High Voltage Engineering, 2007, 33(9): 125-128. [10] 卞栋, 卫志农, 黄向前, 等. 电力市场中含分布式电源的配电网重构模型[J]. 电力系统保护与控制, 2013, 41(11): 117-123. Bian Dong, Wei Zhinong, Huang Xiangqian, et al. Distributed network reconfiguration model including distributed generation in the electricity market[J]. Power System Protection and Control, 2013, 41(11): 117-123. [11] 王超学, 吕志奇, 董慧, 等. 基于改进蜜蜂进化遗传算法的含分布式电源的配电网重构[J]. 电力系统保护与控制, 2012, 40(15): 53-56. Wang Chaoxue, Lü Zhiqi, Dong Hui, et al. Distri- bution network reconfiguration with distributed generation based on an improved bee evolutionary genetic algorithm[J]. Power System Protection and Control, 2012, 40(15): 53-56. [12] 陈光, 戴攀, 周浩, 等. 计及入网电动汽车和分布式电源的配电系统重构[J]. 电网技术, 2013, 37(1): 82-88. Chen Guang, Dai Pan, Zhou Hao, et al. Distribution system reconfiguration considering distributed generators and plug-in electric vehicles[J]. Power System Tech- nology, 2013, 37(1): 82-88. [13] 张节潭, 程浩忠, 姚良忠, 等. 分布式风电源选择定容规划研究[J]. 中国电机工程学报, 2009, 29(16): 1-7. Zhang Jietan, Chen Haozhong, Yao Liangzhong, et al. Study on siting and sizing of distributed wind gener- ation[J]. Proceedings of the CSEE, 2009, 29(16): 1-7. [14] 罗卓伟, 胡泽春, 宋永华, 等. 电动汽车充电负荷计算方法[J]. 电力系统自动化, 2011, 35(14): 36-42. Luo Zhuowei, Hu Zechun, Song Yonghua, et al. Study on plug-in electric vehicles charging load calculating[J]. Automation of Electric Power Systems, 2011, 35(14): 36-42. [15] 余贻鑫, 邱炜, 刘若沁. 基于启发式算法与遗传算法的配电网重构[J]. 电网技术, 2001, 25(11): 19-22. Yu Yixin, Qiu Wei, Liu Ruoqin. Distribution system reconfiguration based on heuristic algorithm and genetic algorithm[J]. Power System Technology, 2001, 25(11): 19-22. [16] Sun Yang, Zhang Lingbo, Gu Xingsheng. Membrane computing based particle swarm optimization algorithm and its application[C]//IEEE International Confer- ence on Bio-Inspired Computing: Theories and Appli- cations (BIC-TA), 2010: 631-636. [17] Zhang Yao, Huang Liang. A variant of P systems for optimization[J]. Neurocomputing, 2009, 72(4-6): 1355- 1360. [18] Petr Sosik, Alfonso Rodriguez-Paton. Membrane computing and complexity theory: a characterization of PSPACE[J]. Journal of Computer and System Sciences, 2007, 73(1): 137-152. [19] Xiao JianHua, Zhang Xingyi, Xu Jin. A membrane evolutionary algorithm for DNA sequence design in DNA computing[J]. Chinese Science Bulletin, 2012, 57(6): 698-706. [20] 许立雄, 吕林, 刘俊勇. 基于改进粒子群优化算法的配电网络重构[J]. 电力系统自动化, 2006, 30(7): 28-30. Xu Lixiong, Lü Lin, Liu Junyong. Modified particle swarm optimization for reconfiguration of distribution network[J]. Automation of Electric Power Systems, 2006, 30(7): 28-30. |
|
|
|