|
|
A Droop Control Method Based on PCC Bus Voltage in Islanded Microgrid |
Wu Xiangyu1, Shen Chen1, Zhao Min1, Li Fan1, Ma Hongwei2, L18-2014-0521/img_1.wmf9.012.0Bin2 |
1. State Key Lab of Power Systems Tsinghua University Beijing 100084 China; 2. Xuji Electric Co. Ltd Beijing 100085 China |
|
|
Abstract Frequency and voltage droop control is a general power control and load sharing strategy in islanded microgrids. However, when all distributed generation (DG) units are connected to the microgrid via power-electronic converters, it is difficult to reflect the power imbalance via the frequency deviation in microgrid. And the conventional droop control based on power-frequency relationship will not be functioning. This paper reveals that the PCC bus voltage magnitude (V) and the ratio (rat) of d-axis bus voltage to q-axis bus voltage are related to power imbalance in a power-electronic converter interfaced microgrid. A P-V and Q-rat droop control method is proposed. With this control, the islanded microgrid can maintain stable voltage and frequency, and all DG units can accurately share active and reactive loads according to preset ratios. Simulation results on an islanded microgrid in its steady-state and load-switching operation verify the proposed method.
|
Received: 05 May 2014
Published: 30 December 2015
|
|
|
|
|
[1] Lopes J A P, Moreira C L, Madureira A G. Defining control strategies for microgrids islanded operation[J]. IEEE Transactions on Power Systems, 2006, 21(2): 916-924. [2] 王成山, 肖朝霞, 王守相. 微网中分布式电源逆变器的多环反馈控制策略[J]. 电工技术学报,2009, 24(2): 100-107. Wang Chengshan, Xiao Zhaoxia, Wang Shouxiang. Multiple feedback loop control scheme for inverters of the micro source in microgrids[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 100-107. [3] Chandorkar M C, Divan D M, Adapa R. Control of parallel connected inverters in standalone AC supply systems[J]. IEEE Transactions on Industry Applications, 1993, 29(1): 136-143. [4] 纪明伟, 张兴, 杨淑英. 基于电压源逆变器的微电网控制策略[J]. 合肥工业大学学报(自然科学版), 2009, 32(11): 1678-1682. Ji Mingwei, Zhang Xing, Yang Shuying. Study on the control strategies of voltage source inverter in micro- grid[J]. Journal of Hefei University of Technology (Science and Technology), 2009, 32(11): 1678-1682. [5] Katiraei F, Iravani M R. Power management strategies for a microgrid with multiple distributed generation units[J]. IEEE Transactions on Power Systems, 2006, 21(4): 1821-1831. [6] Sao C K, Lehn P W. Control and power management of converter fed microgrids[J]. IEEE Transactions on Power System, 2008, 23(3): 1088-1098. [7] 牟晓春, 毕大强, 任先文. 低压微网综合控制策略设[J]. 电力系统自动化, 2010, 34(19): 91-96. Mou Xiaochun, Bi Daqiang, Ren Xianwen. Study on control strategies of a low voltage microgrid[J]. Automation of Electric Power Systems, 2010, 34(19): 91-96. [8] Guerrero J M, Matas J, de Vicuna L G, et al. Wireless-control strategy for parallel operation of distributed-generation inverters[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1461-1470. [9] Matas J, Castilla M, de Vicu X F, et al. Virtual impedance loop for droop-controlled single-phase parallel inverters using a second-order general- integrator scheme[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 2993-3002. [10] He Jinwei, Li Yunwei. An enhanced microgrid load demand sharing strategy[J]. IEEE Transactions on Power Electronics, 2012, 27(9): 3984-3995. [11] Li Yunwei, Ching-Nan K. An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid[J]. IEEE Transactions on Power Electronics, 2009, 24(12): 2977-2988. [12] Li Yunwei, Vilathgamuwa D M, Poh C L. Design, analysis, and real-time testing of a controller for multibus microgrid system[J]. IEEE Transactions on Power Electronics, 2004, 19(5): 1195-1204. [13] 徐诚, 刘念, 赵泓, 等. 基于电力系统二次调频原理的微电源频率控制策略[J]. 电力系统保护与控制, 2013, 41(3): 14-20. Xu Cheng, Liu Nian, Zhao Hong, et al. A novel frequency control strategy of micro-grid based on the secondary frequency regulation of power system[J]. Power System Protection and Control, 2013, 41(3): 14-20. [14] Reza M. Stability analysis of transmission systems with high penetration of distributed generation[D]. Delft: Delft University of Technology, 2006. [15] Mullane A, O'Malley M. The inertial response of induction-machine-based wind turbines[J]. IEEE Transactions on Power Systems, 2005, 20(3): 1496- 1503. [16] 王阳. 微电网分层运行控制系统研究[D]. 北京: 清华大学, 2012. [17] Tremblay O, Dessaint L A, Dekkiche A I. A generic battery model for the dynamic simulation of hybrid electric vehicles[C]. Proceedings of IEEE Vehicle Power and Propulsion Conference, 2007: 284-289. |
|
|
|