|
|
Fault Diagnosis of Transformers Based on Complementary Immune Algorithm |
Yuan Jinsha1, Zhang Liwei1, Li Zhong1, Zhang Yinghui2 |
1. North China Electric Power University Baoding 071003 China; 2. Jibei Electric Power Maintenance Company Beijing 102400 China |
|
|
Abstract The transformer fault diagnosis based on self-organization antibody net (soAbNet) has no network compression mechanism and selects the initial antibodies randomly, so its network performance is instable. Thus, a diagnosis method based on complementary immune algorithm for power transformer is proposed in this paper, and immune operator is designed in detail considering the characteristics of transformer fault diagnosis. Vaccination of immune operator uses K-means optimal clustering algorithm to provide initial antibodies for soAbNet and compresses the network through immune selection, and its parameter is optimized by particle swarm optimization (PSO) algorithm. Experimental results demonstrate that the proposed complementary immune algorithm could make use of prior knowledge and extract the data characteristics of the fault samples effectively. The diagnostic accuracy of the proposed algorithm is higher than that of the single intelligence algorithm.
|
Received: 06 January 2013
Published: 30 December 2015
|
|
|
|
|
[1] 孙才新, 陈伟根, 李俭, 等. 电气设备油中气体在线监测与故障诊断技术[M]. 北京: 科学出版社, 2003. [2] 操敦奎. 变压器油色谱分析与故障诊断[M]. 北京: 中国电力出版社, 2010. [3] Tang W H, Wu Q H. Condition monitoring and assessment of power transformers using comput- ational intelligence[M]. New York: Springer-Verlag Press, 2011. [4] 刘娜, 高文胜, 谈克雄. 基于组合神经网络模型的电力变压器故障诊断方法[J]. 电工技术学报, 2003, 18(2): 83-86. Liu Na, Gao Wensheng, Tan Kexiong. Fault diagnosis of power transformer using a combinatorial neural network[J]. Transactions of China Electrotechnical Society, 2003, 18(2): 83-86. [5] 吴立增, 朱永利, 苑津莎. 基于贝叶斯网络分类器的变压器综合故障诊断方法[J]. 电工技术学报, 2005, 20(4): 45-51. Wu Lizeng, Zhu Yongli, Yuan Jinsha. Novel method for transformer faults integrated diagnosis based on Bayesian network classifier[J]. Transactions of China Electrotechnical Society, 2005, 20(4): 45-51. [6] 章剑光, 周浩, 项灿芳. 基于Super SAB神经网络算法的主变压器故障诊断模型[J]. 电工技术学报, 2004, 19(7): 49-52, 58. Zhang Jianguang, Zhou Hao, Xiang Canfang. Application of Super SAB ANN model for trans- former fault diagnosis[J]. Transactions of China Electrotechnical Society, 2004, 19(7): 49-52, 58. [7] 王永强,律方成,李和明. 基于粗糙集理论和贝叶斯网络的电力变压器故障诊断方法[J]. 中国电机工程学报, 2006, 26(8): 137-141. Wang Yongqiang, Lü Fangcheng, Li Heming. Synthetic fault diagnosis method of power trans- former based on rough set theory and Bayesian network[J]. Proceedings of the CSEE, 2006, 26(8): 137-141. [8] 张东波, 徐瑜,王耀南. 主动差异学习神经网络集成方法在变压器DGA故障诊断中的应用[J]. 中国电机工程学报, 2010, 30(22): 64-70. Zhang Dongbo, Xu Yu, Wang Yaonan. Neural network ensemble method and its application in DGA fault diagnosis of power transformer on the basis of active diverse learning[J]. Proceedings of the CSEE, 2010, 30(22): 64-70. [9] Timmis J, Neal M, Hunt J. An artificial immune system for data analysis[J]. Biosystems, 2000, 55(1-3): 143-150. [10] 丁永生, 任立红. 人工免疫系统: 理论与应用[J]. 模式识别与人工智能, 2000, 13(1): 52-59. Ding Yongsheng, Ren Lihong. Artificial immune system: theory and applications[J]. Pattern Recognition and Artificial Intelligence, 2000, 13(1): 52-59. [11] 焦李成, 杜海峰, 刘芳, 等. 免疫优化计算、学习与识别[M]. 北京: 科学出版社, 2003. [12] Dasgupta D, Forrest S. Artificial immune systems in industrial applications[C]. Proceeding of the Second International Conference on Intelligent Processing and Manufacturing of Materials, Honolulu, HI, 1999. [13] 熊浩, 孙才新, 陈伟根. 电力变压器故障诊断的人工免疫网络分类算法[J]. 电力系统自动化, 2006, 30(6): 57-60. Xiong Hao, Sun Caixin, Chen Weigen. Artificial immune network classification algorithm for fault diagnosis of power transformers[J]. Automation of Electric Power Systems, 2006, 30(6): 57-60. [14] 杜海峰, 王孙安. 基于ART-人工免疫网络的多级压缩机故障诊断[J]. 机械工程学报, 2002, 38(4): 88-90. Du Haifeng, Wang Sunan. Fault diagnose of the reciprocating compressor based on ART-artificial immune network[J]. Chinese Journal of Mechanical Engineering, 2002, 38(4): 88-90. [15] 李中, 苑津莎, 张利伟. 基于自组织抗体网络的电力变压器故障诊断[J]. 电工技术学报, 2010, 25(10): 200-206. Li Zhong, Yuan Jinsha, Zhang Liwei. Fault diagnosis for power transformer based on the self-organization antibody net[J]. Transactions of China Electro- technical Society, 2010, 25(10): 200-206. [16] 焦李成, 王磊. 免疫进化算法[C]. 1999年中国神经网络与信号处理学术会议论文集, 汕头, 1999. [17] 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1): 48-61. Sun Jigui, Liu Jie, Zhao Lianyu. Clustering algorithms research[J]. Journal of Software, 2008, 19(1): 48-61. [18] 周世兵. 聚类分析中的最佳聚类数确定方法研究及应用[D]. 无锡: 江南大学, 2011. [19] 杨维, 李歧强. 粒子群优化算法综述[J]. 中国工程科学, 2004, 6(5): 87-94. Yang Wei, Li Qiqiang. Survey on particle swarm optimization algorithm[J]. Engineering Science, 2004, 6(5): 87-94. [20] 中华人民共和国国家质量监督检验检疫总局. GB/T 7252—2001 变压器油中溶解气体分析和判断导则[S]. 北京: 中国电力出版社, 2001. [21] International Electrotechnical Commission (IEC). IEC 60599:1999 Mineral oil-impregnated electrical equipment in service-Guide to the interpretation of dissolved and free gases analysis[S]. Geneva: IEC, 1999. [22] 郝红卫, 蒋蓉蓉. 基于最近邻规则的神经网络训练样本选择方法[J]. 自动化学报, 2007, 33(12): 1247- 1251. Hao Hongwei, Jiang Rongrong. Training sample selection method for neural networks based on nearest neighbor rule[J]. Acta Automatica Sinica, 2007, 33(12): 1247-1251. |
|
|
|