|
|
Optimum Design of Distributed Small Section of MCR Based on ANSYS |
Yin Zhongdong1, Liu Haipeng1, 2, Wang Shuyao1, Xu Yonghai1, Wan Youwei3 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power University Beijing 102206 China; 2. Kunming University of Science and Technology Kunming 650500 China; 3. Anhui Power Transmission and Construction Co. Ltd. Hefei 230022 China |
|
|
Abstract Magnetic valve controllable reactor(MCR) has been applied more and more widely. Therefore, improving the various performance indicators of MCR itself becomes the focus of current research. This paper put forward that the single magnetic valve in MCR’s core can be divided into several tandem magnetic valve. This new structure can reduce the edge effect, thereby reducing the MCR’s coil inductance value. Under the same working voltage and control voltage, MCR can output more perceptual reactive current, the overall performance of MCR would be improved. Through theoretical analysis and ANSYS simulation, the optimal effective number of magnetic valve segments and the optimal length values of the iron core between two section of magnetic valve is obtained. The specific experiments demonstrate the validity of the theoretical analysis very well. Under the same working voltage and control voltage, when the magnetic valve section is divided into two sections, the current in the coil than the current in the coil of single magnetic valve increased by 7.4%.
|
Received: 22 April 2014
Published: 29 June 2015
|
|
|
|
|
[1] 邱昊, 余梦泽. 新型110kV磁控电抗器的监控系统研制[J]. 高压电器, 2010, 46(6): 69-73. Qiu Hao, Yu Mengze. Supervisory control system of a novel 110kV magnetically controlled reactor[J]. High Voltage Apparatus, 2010, 46(6): 69-73. [2] 魏云冰, 李涛, 张国亮. 基于瞬时无功功率理论的磁控电抗器控制方法[J]. 电力系统保护与控制, 2011, 39(22): 117-121. Wei Yunbing, Li Tao, Zhang Guoliang. A control method for the magnetic-valve controllable reactor based on instantaneous reactive power theory[J]. Power System Protection and Control, 2011, 39(22): 117-121. [3] 陈柏超, 张晨萌, 袁傲, 等. 基于V/V 牵引供电系统的混合式电能质量补偿研究[J]. 电工技术学报, 2013, 28(12): 60-69. Chen Baichao, Zhang Chenmeng, Yuan Ao, et al. Resaerch on a hybrid compensation system for V/V high-speed railway power supply system[J]. Transc- tions of China Electrotechnical Society, 2013, 28(12): 60-69. [4] 赵士硕, 尹忠东, 刘海鹏. 快速响应磁控电抗器的新结构与控制方法[J]. 中国电机工程学报, 2013, 33(15): 149-155. Zhao Shishuo, Yin Zhongdong, Liu Haipeng. Physical design and control method of fast response magnetically controlled reactors[J]. Proceedings of the CSEE, 2013, 33(15): 149-155. [5] 刘海鹏, 尹忠东, 赵士硕. 磁控电抗器快速性研究[J]. 电力电子技术, 2013, 47(1): 15-17. Liu Haipeng, Yin Zhongdong, Zhao Shishuo. Research on the quickness of magnetically controlled reactor[J]. Power Electronics, 2013, 47(1): 15-17. [6] 陈绪轩, 田翠华, 陈柏超, 等. 多级饱和磁阀式可控电抗器谐波分析数学模型[J]. 电工技术学报, 2011, 26(3): 57-64. Chen Xuxuan, Tian Cuihua, Chen Baichao, et al. Mathematical model for harmonics analysis of the multi-stage saturable magnetic-valve controllable reactor [J]. Transctions of China Electrotechnical Society, 2011, 26(3): 57-64. [7] 王异凡, 陈国柱, 张曙. 一种连续磁阀式消弧线圈及其数学模型[J]. 电工技术学报, 2014, 29(5): 239-245. Wang Yifan, Chen Guozhu, Zhang Shu. A continuously magnetic valve arc-suppression coil and its modeling[J]. Transctions of China Electrotechnical Society, 2014, 29(5): 239-245. [8] 牟宪民, 魏晓霞, 纪延超, 等. 串联型可控饱和电抗器谐波特性分析[J]. 电力自动化设备, 2007, 27(3): 14-17. Mu Xianmin, Wei Xiaoxia, Ji Yanchao, et al. Harmonic characteristic analysis of serial controllable saturated reactor[J]. Electric Power Automation Equipment, 2007, 27(3): 14-17. [9] 张永峰, 程新功, 宗西举, 等. 基于分岔理论的磁阀式可控电抗器匝数比研究[J]. 电力自动化设备, 2009, 29(8): 91-94. Zhang Yongfeng, Cheng Xingong, Zong Xiju, et al. Turn ratio of magnetic valve type controlled reactor based on bifurcation theory[J]. Electric Power Automa- tion Equipment, 2009, 29(8): 91-94. [10] 王宝安, 金丽莉, 罗亚桥, 等. 基于磁控电抗器的动态无功补偿装置[J]. 电力自动化设备, 2010, 30(4): 97-100. Wang Baoan, Jin Lili, Luo Yaqiao, et al. Dynamic reactive power compensation equipment based on magnetically controlled reactor[J]. Electric Power Automation Equipment, 2010, 30(4): 97-100. [11] 杨高, 李争光, 刘金旭. 基于matlab的磁控电抗器的建模与仿真[J]. 湖北工业大学学报, 2011, 26(1): 70-73. Yang Gao, Li Zhengguang, Liu Jinxu. Magnetically saturated controllable reactors model and simulation analysis based on matlab[J]. Journal of Hubei Univer- sity of Technology, 2011, 26(1): 70-73. [12] 邢海瀛, 陈柏超, 张亚迪, 等. 快速响应磁控电抗器抑制特高压操作过电压研究[J]. 电力自动化设备, 2009, 29(1): 15-18. Xing Haiying, Chen Baichao, Zhang Yadi, et al. UHV switching overvoltage suppression by quick response magnetically controlled reactor[J]. Electric Power Automation Equipment, 2009, 29(1): 15-18. [13] Sakura T, Takahashi N, Fujiwara K, et al. 3D-finite element analysis of eddy current loss of three-phase shunt reactor[J]. JSAEM 1(2003)81-88. [14] Lotfi A, Faridi M. Inductance calculation of shunt reactor using 3D finite element method[C]. Power System Conference(PSC09), In Persian, Tehran, IRAN, 2009. [15] Yanping L, Fang Z, Haiting Z, et al. Leakage inductance calculation and simulation research of extra-high voltage magnetically controlled shunt reactor[C]. International Conference on Mechanic Automation and Control Engineering (MACE), 2010: 4025-4028. [16] Balakrishnan A, Joines W T, Wilson T G. Air-gap reluctance and inductance calculations for magnetic circuits using a Schwarz-Christoffel transformation[J]. IEEE Transactions on Power Electronics, 1997, 12(4): 654-663. [17] Abbas Lotfi, Ebrahim Rahimpour. Optimum design of core blocks and analyzing the fringing effect in shunt reactors with distributed gapped-core[J]. Electric Power Systems Research, 2013, 101: 63-70. |
|
|
|