|
|
Online Short-Term Load Forecasting Based on ELM with Kernel Algorithm in Micro-Grid Environment |
Liu Nian1, Zhang Qingxin1, Liu Haitao2 |
1. School of Electrical and Electronic Engineering North China Electric Power UniversityBeijing 102206 China; 2. China Electric Power Research Institute Bejing 100192 China |
|
|
Abstract Considering the cost constraints and various electrical characteristics of the small capacity user-side micro-grid constituted by single or group users, a short-term load forecasting method based on extreme learning machine with kernel(ELM_k) algorithm is proposed. The ELM_k, heuristic genetic algorithm and time division training samples are used to establish a short-term load forecasting model, including offline parameter optimization and online load forecasting. The cycle update of model parameters guarantees the timeliness of the optimum parameters, and reduces the computational complexity and storage space of the online forecasting system. The load forecasting of user-side micro- grids with different capacities and types is processed, and the load forecasting accuracy, the model performance after cycle update, the micro-grid operation costs under load forecasting result and the calculation efficiency of this method are analyzed.
|
Received: 11 April 2013
Published: 25 May 2015
|
|
|
|
|
[1] 鲁宗相, 王彩霞, 闵勇, 等. 微电网研究综述[J]. 电力系统自动化, 2007, 31(19): 100-107. Lu Zongxiang, Wang Caixia, Min Yong, et al. Overview on microgrid research[J]. Automation of Electric Power Systems, 2007, 31(19): 100-107. [2] 陈益哲, 张步涵, 王江虹, 等. 基于短期负荷预测的微网储能系统主动控制策略[J]. 电网技术, 2011, 35(8): 35-40. Chen Yizhe, Zhang Buhan, Wang Jianghong, et al. Active control strategy for microgrid energy storage system based on short-term load forecasting[J]. Power Systems Technology, 2011, 35(8): 35-40. [3] 周念成, 邓浩, 王强钢, 等. 光伏与微型燃气轮机混合微网能量管理研究[J]. 电工技术学报, 2012, 27(1): 74-84. Zhou Niancheng, Deng Hao, Wang Qianggang, et al. Energy management strategy of PV and micro-turbine hybrid micro-grid[J]. Transactions of China Electrotech- nical Society, 2012, 27(1): 74-84. [4] 刘小平, 丁明, 张颖媛, 等. 微网系统的动态经济调度[J]. 中国电机工程学报, 2011, 31(31): 77-84. Liu Xiaoping, Ding Ming, Zhang Yingyuan, et al. Dynamic economic dispatch for microgrids[J]. Procee- dings of the Chinese Society of Electrical Engineering, 2011, 31(31): 77-84. [5] Amjady N, Keynia F, Zareipour H. Short-term load forecast of microgrids by a new bilevel prediction strategy[J]. IEEE Transactions on Smart Grid, 2010, 1(3): 286-294. [6] 王越, 卫志农, 吴佳佳. 人工神经网络预测技术在微网运行中的应用[J]. 电力系统及其自动化学报, 2012, 24(2): 83-89. Wang Yue, Wei Zhinong, Wu Jiajia. Application of ANN prediction technology in microgrid operation[J]. Procee- dings of the CSU-EPSA, 2012, 24(2): 83-89. [7] 陈民铀, 朱博, 徐瑞林, 等. 基于混合智能技术的微电网剩余负荷超短期预测[J]. 电力自动化设备, 2012, 32(5): 13-18. Chen Minyou, Zhu Bo, Xu Ruilin, et al. Ultra-short- term forecasting of microgrid surplus load based on hybrid intelligence techniques[J]. Electric Power Automation Equipment, 2012, 32(5): 13-18. [8] Ghofrani M, Hassanzadeh M, Etezadi-Amoli M, et al. Smart meter based short-term load forecasting for residential customers[C]. North American Power Sym- posium(NAPS), 2011: 1-5. [9] De Silva D, Yu X, Alahakoon D, et al. Incremental pattern characterization learning and forecasting for electricity consumption using smart meters[C]. IEEE International Symposium on Industrial Electronics (ISIE), 2011: 807-812. [10] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501. [11] Huang G B, Wang D H, Lan Y. Extreme learning machines: a survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122. [12] Huang G B, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification [J]. Systems, Man, and Cybernetics, Part B: IEEE Transactions on Cybernetics, 2012, 42(2): 513-529. [13] 程松, 闫建伟, 赵登福, 等. 短期负荷预测的集成改进极端学习机方法[J]. 西安交通大学学报, 2009, 43(2):106-110. Cheng Song, Yan Jianwei, Zhao Dengfu, et al. Short- term load forecasting method based on ensemble improved extreme learning machine[J]. Journal of Xi’an Jiaotong University, 2009, 43(2): 106-110. [14] 毛力, 王运涛, 刘兴阳, 等. 基于改进极限学习机的短期电力负荷预测方法[J]. 电力系统保护与控制, 2012, 40(20): 140-144. Mao Li, Wang Yuntao, Liu Xingyang, et al. Short- term power load forecasting method based on improved extreme learning machine[J]. Power System Protection and Control, 2012, 40(20): 140-144. [15] Nizar A H, Dong Z Y, Wang Y. Power utility nontech- nical loss analysis with extreme learning machine method[J]. IEEE Transactions on Power Systems, 2008, 23(3): 946-955. [16] Serre D. Matrices: theory and applications[M]. Germany: Springer, 2010. [17] Toh K A. Deterministic neural classification[J]. Neural Computation, 2008, 20(6): 1565-1595. |
|
|
|