|
|
The EMI Study of Pole-Mounted Switch’s Breaking on Its Secondary Smart Devices |
Li Peng1, Huang Daochun1, Ruan Jiangjun1, Zhu Chenguang2, Niu Xiaobo1, Pu Ziheng1 |
1. School of Electrical Engineering Wuhan University Wuhan 430072 China; 2. Pinggao Group Co., Ltd. Pingdingshan 467001 China |
|
|
Abstract The higher requirement of intelligent equipment is put forward with the construction and development of smart grid. The safe and reliable operation of secondary control and protection devices is the important guarantee to realize the intelligentialize of the primary equipment. Pole- mounted switch is the key equipment for the protection and control in the power distribution system, and the high frequency signal produced during the breaking arc process is known to be one of serious sources of electromagnetic interference(EMI) to its secondary smart equipment, which can lead to secondary devices of pole-mounted switch display malfunction. Hence, it is of great significance to study the EMI problem of the secondary smart equipment due to the operations of pole-mounted switch. This paper carried out the synthetic test for 10kV pole-mounted switch by using synthetic test circuit. The output signal of current transformer(CT), the input and output signals of FTU controller were collected at the same time, and then obtained the disturbance frequency band and energy distribution of the signals due to the breaking of pole-mounted switch by time-frequency characteristic analysis. Results show that, the secondary sides of CT and FTU controller are bearing the transient EMI when pole-mounted switch is in operation; the frequency distribute is mainly in 7.81~15.62MHz due to the breaking arcing process of pole-mounted switch; the frequency distribute is mainly in 31.25~62.5MHz at the time of arc current passing zero; the EMI caused by transient recovery voltage(TRV) is mainly distribution in 31.25~125MHz.
|
Received: 14 April 2014
Published: 25 May 2015
|
|
|
|
|
[1] 张东霞, 姚良忠, 马文媛. 中外智能电网发展战略[J]. 中国电机工程学报, 2013, 33(31): 1-14. Zhang Dongxia, Yao Liangzhong, Ma Wenyuan. Deve- lopment strategies of smart grid in china and abroad [J]. Proceedings of the CSEE, 2013, 33(31): 1-14. [2] 蔡月明, 李惠宇, 何胜利. 智能开关控制装置关键技术研究[J]. 电力系统保护与控制, 2011, 39(11): 129-132. Cai Yueming, Li Huiyu, He Shengli. Key technology research of intelligent switchgear’s control device[J]. Power System Protection and Control, 2011, 39(11): 129-132. [3] 唐晓辉. 变电站的电磁干扰预测分析[D]. 天津: 河北工业大学, 2007. [4] 杨吟梅. 变电站电磁兼容问题(二)[J]. 电网技术, 1997, 21(3): 72-75. Yang Yinmei. The electromagnetic compatibility pro- blems in substations(二)[J]. Power System Technology, 1997, 21(3): 72-75. [5] Fujimoto N, Boggs S A. Characteristics of GIS discon- nector induced short risetime transients incident on externally connected power system components[J]. IEEE Transactions on Power Delivery, 1988, 3(3): 961-970. [6] Meppelink J, Diederich K, Feser K, et al. Very fast transients in GIS[J]. IEEE Transactions on Power Delivery, 1989, 4(1): 223-233. [7] Wiggins C M, Wright S E. Switching transient fields in substations[J]. IEEE Transactions on Power Delivery, 1991, 6(2): 591-600. [8] Wiggins C M, Thomas D E, Nickel F S. Transient electromagnetic interference in substations[J]. IEEE Transactions on Power Delivery, 1994, 9(4): 1869-1880. [9] Daily W K, Dawalibi F. Measurement and computations of electromagnetic fields in electric power substations [J]. IEEE Transactions on Power Delivery, 1994, 9(1): 324-332. [10] Rashkes V S, Ailes L D. Very high frequency over- voltage at air EHV substations during disconnect switch operations[J]. IEEE Transactions on Power Delivery, 1996, 11(3): 1618-1623. [11] Nils Hardt, Dieter Koenig. Overvoltages in secondary circuits of medium-voltage switchgear generated by multiple reignitions of circuit breakers[J]. IEEE Transac- tions on Electromagnetic Compatibility, 1999, 41(4): 510-515. [12] Hossien Heydari, Vahid Abbasi, Faramarz Faghihi. Impact of switching-induced electromagnetic inter- ference on low-voltage cables in substations[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(4): 937-944. [13] Dennis Burger, Stefan Tenbohlen, Wolfgang Köhler. Impact of multiple restrikes at vacuum circuit breakers on the EMC of medium voltage switchgear[C]. IEEE International Symposium on Electromagnetic Compati- bility, Roma, Italy, 2012. [14] 李清泉, 李彦明, 牛亚民. 变电站开关操作引起的瞬变电磁场及其防护[J]. 高电压技术, 2001, 27(4): 35-37. Li Qingquan, Li Yanming, Niu Yamin. Transient electromagnetic field caused by the switching operation in substation and its protection[J]. High Voltage Tech- nology, 2001, 27(4): 35-37. [15] 卢斌先, 王泽忠, 李成榕, 等. 500kV变电站开关操作瞬态电场测量与研究[J]. 中国电机工程学报, 2004, 24(4): 133-138. Lu Binxian, Wang Zezhong, Li Chengrong, et al. Measurement and research of switching operation transient electric field in 500kV substations [J]. Procee- dings of the CSEE, 2004, 24(4): 133-138. [16] 齐磊. 变电站瞬态电磁场对二次电缆的电磁耦合机理研究[D]. 保定: 华北电力大学, 2006. [17] 中国国家标准化管理委员会. GB/T 1984-2003 高压交流断路器[S]. 北京: 中国标准出版社, 2003. [18] 孙鹏, 郑志成, 高翔. 基于小波分析的故障电弧检测方法[J]. 高压电器, 2012, 48(1): 25-34. Sun Peng, Zheng Zhicheng, Gao Xiang. Arc fault detection method based on wavelet analysis[J]. High Voltage Electrical Apparatus, 2012, 48(1): 25-34. [19] 崔治. 小波分析在超声检测信号处理中的应用研究[D]. 长沙: 湖南大学, 2012. [20] 郑志成. 故障电弧在线诊断技术研究[D]. 沈阳: 沈阳工业大学, 2011. [21] 孙鹏, 董荣刚, 郑志成. 基于小波分析信号特征频段能量变比的故障电弧诊断技术研究[J]. 高压电器, 2010, 46(7): 46-56. Sun Peng, Dong Ronggang, Zheng Zhicheng. Tech- nology research of arc fault diagnosis based on wavelet analysis of signal characteristics frequency band energy ratio[J]. High Voltage Electrical Apparatus, 2010, 46(7): 46-56. [22] 闫格, 吴细秀, 田芸, 等. 开关电弧放电电磁暂态干扰研究综述[J]. 高压电器, 2014, 50(2): 119-130. Yan Ge, Wu Xixiu, Tian Yun, et al. Review on the research of electromagnetic transient interference caused by arc discharge due to switchgear operation[J]. High Voltage Electrical Apparatus, 2014, 50(2): 119-130. [23] 陈磊. 变电站开关操作暂态电磁干扰的计算与分析[D]. 济南: 山东大学, 2007. [24] 黄益庄. 变电站智能电子设备的电磁兼容技术[J]. 电力系统保护与控制, 2008, 36(15): 6-9. Huang Yizhuang. EMC technology for IED in substa- tions[J]. Power System Protection and Control, 2008, 36(15): 6-9. [25] 卢斌先, 王泽忠, 李云伟, 等. 金属屏蔽盒强瞬态电场屏蔽效能实验[J]. 电工技术学报, 2007, 22(1): 7-12. Lu Binxian, Wang Zezhong, Li Yunwei, et al. Experi- mental evaluation of shielding effectiveness against high electric pulse for metal enclosures with an aperture [J]. Transactions of China Electrotechnical Society, 2007, 22(1): 7-12. [26] 孙超. 变电站二次设备抗干扰措施研究[D]. 北京: 华北电力大学, 2009. [27] 齐磊, 崔翔. 变电站开关操作对屏蔽电缆电磁干扰的预测[J]. 中国电机工程学报, 2007, 27(9): 46-51. Qi Lei, Cui Xiang. Prediction of electromagnetic inter- ference on the shielded cable due to the switching operation in substation[J]. Proceedings of the CSEE, 2007, 27(9): 46-51. [28] 赵治华, 张向明, 李建轩, 等. 互感器耦合电磁干扰的对消方法[J]. 电工技术学报, 2010, 25(1): 19-23. Zhao Zhihua, Zhang Xiangming, Li Jianxuan, et al. Cancellation method to control mutual-inductance coupling EMI[J]. Transactions of China Electrotech- nical Society, 2010, 25(1): 19-23. [29] 章勇高, 蒋有缘, 方华松, 等. 基于模拟退火算法的共模电磁干扰抑制技术[J]. 电工技术学报, 2008, 23(6): 1-6. Zhang Yonggao, Jiang Youyuan, Fang Huasong, et al. Common mode EMI suppressing based on simulated annealing algorithm[J]. Transactions of China Elec- trotechnical Society, 2008, 23(6): 1-6. |
|
|
|