|
|
Impact of Electric Field on the Moisture Diffusion Properties of Insulation Paper |
Wang Youyuan, Yang Tao, Tian Miao, Fan Peng |
State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400030 China |
|
|
Abstract Moisture and electric field are two of the most important factors for aging of insulation paper. For a long time, effect of moisture on the insulation paper is mostly based on macro test. Meanwhile, the numerical simulation of the electric field is based on some electrical professional software such as Ansoft, Ansys, Matlab and so on. However, these two methods can not reflect the microcosmic physical and chemical processes of the material at the molecular level. In this paper, moisture diffusions on the crystalline surface and in amorphous region of transformer insulation paper under different external electric field were dynamic simulated respectively by the material analysis software Material Studio. Results show that: The polarization effect of electric field restrains movement of water molecules on the surface of the crystal cellulose, which leads to the reduction of total diffusion coefficient D and the difference among Dx, Dy and Dz. The interaction energy between crystal cellulose surface and water molecules would be increased by electric field, which enhances the hydrophilicity of crystal cellulose surface and affects the directionality of water diffusion coefficient to some extent. Relatively, movement of water in amorphous cellulose with electric field is complicated and lack of regularity.
|
Received: 26 July 2013
Published: 23 March 2015
|
|
|
|
|
[1] Garcia B, Burgos J C, Alonso A, et al. A moisture in oil model for power transformer monitoring, part II: experimental verification[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1423-1429. [2] Harvey T J, Wood R J, Denuault G, et al. Effect of oil quality on electrostatic charge generation and trans- port[J]. Journal of Electrostatics, 2002, 55(1): 1-23. [3] 廖瑞金, 尹建国, 杨丽君, 等. 油纸绝缘热老化过程中含水量变化趋势及水分转移规律[J]. 高电压技术, 2010, 36(4): 828-834. Liao Ruijin, Yin Jianguo, Yang Lijun, et al. Moisture content variation and transfer of oil-paper insulation during thermal aging process[J]. High Voltage Enginee- ring, 2010, 36(4): 828-834. [4] 李剑, 陈晓陵, 张召涛, 等. 植物油纸绝缘的微水扩散特性[J]. 高电压技术, 2010, 36(6): 1379-1383. Li Jian, Chen Xiaoling, Zhang Zhaotao, et al. Characteristics of moisture diffusion in vegetable oil-paper Insulation[J]. High Voltage Engineering, 2010, 36(6): 1379-1383. [5] 廖瑞金, 马志钦, 郝建, 等. 水分对变压器油和绝缘纸频域介电谱特性的影响[J]. 高电压技术, 2010, 36(12): 2869-2875. Liao Ruijin, Ma Zhiqin, Hao Jian, et al. Influence of water content on frequency domain spectroscopy characteristics of transformer oil and insulation paper[J]. High Voltage Engineering, 2010, 36(12): 2869-2875. [6] Mazeau K, Heux L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose[J]. Journal of Physical Chemistry B, 2003, 107(10): 2394-2403. [7] Grigoriew H, Chmielewski A G. Capabilities of X-ray methods in studies of processes of permeation through dense membranes[J]. Journal of Membrane Science, 1998, 142(1): 87-95. [8] Wickholm K, Larsson P T Iversen T. Assignment of non-crystalline forms in cellulose I by CP/ MAS 13C NMR spectroscopy[J]. Carbohydrate Research, 1998, 312(3): 123-129. [9] 刘君, 吴广宁, 周利军, 等. 油纸绝缘体系微水扩散的分子模拟[J]. 高电压技术, 2010, 36(12): 2907- 2912. Liu Jun, Wu Guangning, Zhou Lijun, et al. Moisture diffusion in oil-paper insulation using molecular simula- tion[J]. High Voltage Engineering, 2010, 36(12): 2907-2912. [10] Meunier M, Quirke N, Binesti D, et al. Identification of space charge in cable insulation: a new approach using molecular simulation[C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena, Minnea- polis, USA, 1997: 68-71. [11] Nishiyama Y. Structure and properties of the cellulose microfibril[J]. Journal of Wood Science, 2009, 55(4): 241-249. [12] Nishiyama Y, Johnson G P, French A D, et al. Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydro- gen bonding in cellulose Iβ[J]. Biomacromolecules, 2008, 9(11): 3133-3140. [13] Liao Ruijin, Zhu Mengzhao, Yang Lijun, et al. Molecular dynamics study of water molecule diffu- sion in oil-paper insulation materials[J]. Physica B: Condensed Matter, 2011, 406(5): 1162-1168. [14] Baker A A, Helbert W, Sugiyama J, et al. Surface structure of native cellulose microcrystals by AFM[J]. Applied Physics A, 1998, 66 (S1): 559-563. [15] Theodorou D N, Suter U W. Detailed molecular structure of a vinyl polymer glass[J]. Macromolecules, 1985, 18(7): 1467-1478. [16] Brandrup J, Immergut E H, Grulk E A. Polymer Handbook[M]. New York: Wiley-Interscience Public- ation, 1999. [17] Sun H. Ab initio calculations and forcefield develop- ment for computer simulation of polysilanes[J]. Macromolecules, 1995, 28(3): 701-712. [18] Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. Journal of Chemical Physics, 1980, 72: 2384-2393. [19] Karasawa N, Goddard W A. Force fields, structures, and properties of polyvinylidene fluoride crystals[J]. Macromolecules, 1992, 25(26): 7268-7281. [20] Cheatham T E III, Miller J L, Fox T, et al. Molecular dynamics simulations on solvated biomolecular systems: the particle mesh ewald method leads to stable trajectories of DNA, RNA, and proteins[J]. Journal of the American Chemical Society, 1995, 117(14): 4193- 4194. [21] Materials Studio 4.0, compass/Accelrys: San Diego, CA, USA, 2006. [22] 余翔, 韩铭, 杨小震. 分子动力学模拟研究线型聚乙烯链在强电场中的取向行为[J]. 高等学校化学学报, 2011, 32(1): 180-184. Yu Xiang, Han Ming, Yang Xiaozhen. Molecular dynamics simulation study on the reorientation behavior of linear polyethylene under high electric field[J]. Chemical Journal of Chinese Universities 2011, 32(1): 180-184. [23] Allen M P, Tildesley D J. Computer simulation of liquids[M]. Oxford: Clarendon Press, 1987. [24] Hanus J, Mazeau K. The xyloglucan-cellulose assem- bly at the atomic scale[J]. Biopolymers, 2006, 82(1): 59-73. [25] Mayo S L, Olafson B D, Goddard W A. Dreiding: A generic force field for molecular simulations[J]. Journal of Chemical Physic, 1990, 94(26): 8897-8909. |
|
|
|