|
|
A Direct Torque Control Strategy of Induction Motor Drives with Simple Duty Ratio Regulator |
Li Zhengxue1, Zhang Yongchang2, Li Zhengxi2, Ban Xiaojuan1, Yang Haitao2 |
1. University of Science & Technology Beijing Beijing 100083 China; 2. Power Electronics & Motor Drivers Engineering Research Center of Beijing North China University of Technology Beijing 100144 China |
|
|
Abstract In order to solve the problems of high torque ripple and variable switching frequency in conventional direct torque controlled(DTC) induction motor drives, the existing literature have proposed some methods to reduce torque ripple by optimizing the duty ratio of the active vector. However, these methods are usually complicated and parameter dependent. After comparing three typical kinds of duty determination methods, this paper proposes a very simple but effective method to obtain the duty ratio. The proposed scheme is able to reduce the torque and flux ripples significantly while maintaining the simplicity and robustness of the conventional DTC at the most. Simulations and presented experimental results validate the effectiveness of the proposed schemes in this paper.
|
Received: 25 September 2013
Published: 23 March 2015
|
|
|
|
|
[1] Casadei D, Profumo F, Serra G, et al. FOC and DTC: two viable schemes for induction motors torque control[J]. IEEE Transactions on Power Electronics, 2002, 17(5): 779-787. [2] Takahashi I, Noguchi T. A new quick-response and high-efficiency control strategy of an induction motor[J]. IEEE Transactions on Industry Applications, 1986, 22(5): 820-827. [3] Depenbrock M. Direct self-control(DSC) of inverter- fed induction machine[J]. IEEE Transactions on Power Electronics, 1988, 3(4): 420-429. [4] Buja G S, Kazmierkowski M P. Direct torque control of PWM inverter-fed AC motors—a survey[J]. IEEE Transactions on Industrial Electronics, 2004, 51(4): 744-757. [5] Tiitinen P, Surandra M. The next generation motor control method, DTC direct torque control[C]. Proc of Int Conf Power Electron, Drives and Energy Syst for Ind Growth, New Delhi, India, 1996: 37-43. [6] Lai Yenshin, Chen Jianho. A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction [J]. IEEE Transactions on Energy Convers, 2001, 16(3): 220-227. [7] Lascu C, Trzynadlowski A. Combining the principles of sliding mode, direct torque control, and space- vector modulation in a high performance sensorless ac drive[J]. IEEE Transactions on Industry Applications, 2004, 40(1): 170-177. [8] Habetler T G, Profumo F, Pastorelli M et al. Direct torque control of induction machines using space vector modulation[J]. IEEE Transactions on Industry Applications, 1992, 28(5): 1045-1053. [9] Kenny B, Lorenz R. Stator- and rotor-flux- based deadbeat direct torque control of induction machines [J]. IEEE Transactions on Industry Applications, 2003, 39(4): 1093-1101. [10] Zhang Yongchang, Zhu Jianguo. Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency[J]. IEEE Transactions on Power Electronics, 2011, 26(1): 235-248. [11] Flach E, Hoffmann R, Mutschler P. Direct mean torque control of an induction motor[C]. Proc European Power Electronics and Applications(EPE), Trondheim, Norway, 1997: 672-677. [12] Kang J K, Sul S K. New direct torque control of induction motor for minimum torque ripple and constant switching frequency[J]. IEEE Transactions on Industry Applications, 1999, 35(5): 1076-1082. [13] 杨家强, 黄进. 异步电动机直接转矩控制转矩脉动最小化方法研究[J]. 电工技术学报, 2004, 19(9): 23-29. Yang Jiaqiang, Huang Jin. Research on torque ripple minimization strategy for direct torque control of induction motors[J]. Transactions of China Electrotech- nical Society, 2004, 19(9): 23-29. [14] Romeral L, Arias A, Aldabas E, et al. Novel direct torque control(DTC) scheme with fuzzy adaptive torque- ripple reduction[J]. IEEE Transactions on Industrial Electronics, 2003, 50(3): 487-492. [15] 刘军, 刘丁, 吴浦升, 等. 基于模糊控制调节电压矢量作用时间策略的永磁同步电机直接转矩控制仿真研究[J]. 中国电机工程学报, 2004, 24(10): 148-152. Liu Jun, Liu Ding, Wu Pusheng, et al. The simulation analysis of permanent magnet synchronous motor based on the strategy of modulating the time of voltage vector[J]. Proceedings of the CSEE, 2004, 24(10): 148-152. [16] Kouro S, Cortes P, Vargas R, et al. Model predictive control—a simple and powerful method to control power converters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1826-1838. [17] Geyer T, Papafotiou G, Morari M. Model predictive direct torque control part I: concept, algorithm, and analysis[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1894-1905. [18] Drobnic K, Nemec M, Nedeljkovic D, et al. Predictive direct control applied to AC drives and active power filter[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1884-1893. [19] Miranda H, Cortes P, Yuz J, et al. Predictive torque control of induction machines based on state-space models[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1916-1924. [20] Kubota H, Matsuse K, Nakmo T. DSP-based speed adaptive flux observer of induction motor[J]. IEEE Transactions on Industry Applications, 1993, 29(2): 344-348. [21] Yang G, Chin T H. Adaptive-speed identification scheme for a vector-controlled speed sensorless inverter- induction motor drive[J]. IEEE Transactions on Industry Applications, 1993, 29(4): 820-825. [22] Jehudi M, Jan A M. Speed-sensorless direct torque control of induction motors using an adaptive flux observer[J]. IEEE Transactions on Industry Applica- tions, 2000, 36(3): 778-785. |
|
|
|