|
|
Design of Anti-Wind and Anti-Corona 24-Bundle Conductors for UHV DC Voltage Withstand Test |
Wang Feng1,Yi Chang1,Zhang Guangdong2,Wen Dingjun2,Lü Jingshun2 |
1. Hunan University Changsha 410082 China 2. Gansu Electric Power Research Institute Lanzhou 730050 China |
|
|
Abstract To meet the emergency of unexpected powerful wind in northwest China,this article designs a new type of anti-wind and anti-corona 24-bundle conductors for DC 800kV voltage withstand test. Based on computational fluid dynamics(CFD) and charge simulation method(CSM),this paper calculates and analyzes a series design parameters of conductors’ related aerodynamics characteristic in wind velocity field as well as its 3D electric field by solving the corresponding 2D reynolds averaged navier-stokes(RANS) equation of the air-bundled conductors system and potential coefficient matrix. Aim to suppress corona and wind deviation angle,this article determines the diameter of sub- conductors,radius of spacing plate and split number of test conductors considering its electric characteristic as well as mechanical performance. Calculation results indicates that a critical conductor spacing ratio exists when interference effect reaches its peak value,and wind deviation angle can be strongly influenced by the interference effect between sub-conductors,and at the wind speed of 13.8m/s,the wind deviation angle of test conductors can be suppressed under 25°and the maximum surface voltage gradient under 27kV/cm. It concludes that the anti-wind and anti-corona 24-bundle conductors for DC 800kV voltage withstand test possesses an excellent electrical and mechanical performance to make sure the test procedure in safe.
|
Received: 29 June 2013
Published: 22 January 2015
|
|
|
|
|
[1] 陈忠,蔡泽祥. ±800kV直流设备现场直流耐压实验[J]. 高电压技术,2009(10): 2356-2360. Chen Zhong,Cai Zexiang. On site DC voltage with- stand test of 800kV DC equipment[J]. High Voltage Engineering,2009,35(10): 2356-2360. [2] 张文亮,陆家榆,鞠勇,等. ±800kV直流输电线路的导线选型研究[J]. 中国电机工程学报,2007,27(27): 1-6. Zhang Wenliang,Lu Jiayu,Ju Yong,et al. Design consideration of conductor bundles of ±800kV DC transmission lines[J]. Proceedings of CSEE,2007,27(27): 1-6. [3] Li H,Chen W L,Xu F,et al. A numerical and experimental hybrid approach for the investigation of aerodynamic forces on stay cables suffering from rain-wind induced vibration[J]. Journal of Fluids and Structures,2010,26(7): 1195-1215. [4] 刘学忠,高超,邓显波,等. 高速气流对绝缘子表面放电特征的影响[J]. 电工技术学报,2010,25(12): 16-21. Liu Xuezhong,Gao Chao,Deng Xianbo,et al. Influence of high-speed airflow on surface discharge characteristics of insulator[J]. Transactions of China Electrotechnical Society,2010,25(12): 16-21. [5] 吕翼,楼文娟,孙珍茂,等. 覆冰三分裂导线气动力特性的数值模拟[J]. 浙江大学学报(工学版),2010,44(1): 174-179. Lü Yi,Lou Wenjuan,Sun Zhenmao,et al. Numerical simulation of aerodynamic characteristics of three bundled iced transmission lines[J]. Journal of Zhejiang University(Engineering Science),2010,44(1): 174- 179. [6] 王少华,蒋兴良,孙才新. 覆冰导线舞动特性及其引起的导线动态张力[J]. 电工技术学报,2010,25(1): 159-166. Wang Shaohua,Jiang Xingliang,Sun Caixin. Charac- teristics of icing conductor galloping and induced dynamic tensile force of the conductor[J]. Transactions of China Electrotechnical Society,2010,25(1): 159- 166. [7] 曹化锦,李黎,陈元坤,等. 架空输电线的找形及舞动分析[J]. 华中科技大学学报: 自然科学版,2011,39(1): 102-105. Cao Huajin,Li Li,Chen Yuankun,et al. Form finding and galloping analysis of overhead transmission conductors[J]. Journal of Huazhong University of Science and Technology,2011,39(1): 102-105. [8] 张志劲,黄海舟,蒋兴良,等. 基于流体力学的不同型式绝缘子覆冰增长过程分析[J]. 电工技术学报,2012,27(10): 35-43. Zhang Zhijin,Huang Haizhou,Jiang Xingliang,et al. Analysis of ice growth on different type insulators based on fluid dynamics[J]Transactions of China Electrotechnical Society,2012,27(10): 35-43. [9] 陈元坤,李黎,曹化锦. 分裂导线微风振动数值仿真[J]. 振动与冲击,2013,32(7): 179-183. Chen Yuankun,Li Li,Cao Huajin. Numerical simula- tion of Aeolian vibration of bundle conductors[J]. Journal of Vibration and Shock,2013,32(7): 179-183. [10] 张兆顺,崔桂香,许春晓. 湍流理论与模拟[M]. 北京: 清华大学出版社,2005. [11] 李寿英,顾明. 斜直圆柱绕流的CFD模拟[J]. 空气动力学学报,2005,23(2): 222-227. Li Shouying,Gu Ming. CFD simulation of flow past inclined/vertical cylinders[J]. Acta Aerodynamica Sinica,2005,23(2): 222-227. [12] 谢强,谢超,管政. 特高压8分裂导线风荷载干扰效应风洞实验[J]. 高电压技术,2011,37(9): 2126- 2132. Xie Qiang,Xie Chao,Guan Zheng. Wind tunnel test on the interference effect on wind load of UHV 8-bundled conductors[J]. High Voltage Engineering,2011,37(9): 2126-2132. [13] 谢强,孙启刚,管政. 多分裂导线整体阻力系数风洞实验研究[J]. 电网技术,2013,37(4): 1106-1112. Xie Qiang,Sun Qigang,Guan Zheng. Wind tunnel test on global drag coefficients of multi-bundled conductors [J]. Power System Technology,2013,37(4): 1106-1112. [14] 中华人民共和国电力行业标准. DL/T 436—2005高压直流架空送电线路技术导则[S]. 北京: 中国电力出版社,2005. [15] So R,Liu Y,Chan S,et al. Numerical studies of a freely vibrating cylinder in a cross-flow[J]. Journal of Fluids and Structures,2001,15(6): 845-866. [16] 邵天晓. 架空送电线路的电线力学计算[M]. 北京: 中国电力出版社,1987. [17] 彭迎,阮江军. 模拟电荷法计算特高压架空线路3维工频电场[J]. 高电压技术,2006,32(12): 69-73. Peng Ying,Ruan Jiangjun. Calculation of three- dimensional harmonic electric field around ultra high voltage overhead line based on the charge simulation method[J]. High Voltage Engineering,2006,32(12): 69-73. [18] 孙才华,宗伟,李世琼,等. 一种较准确的分裂导线表面场强计算方法[J]. 电网技术,2006,30(4): 92-96. Sun Caihua,Zong Wei,Li Shiqiong,et al. A more accurate calculation method of surface electric field intensity of bundled conductors[J]. Power System Technology,2006,30(4): 92-96. [19] IEC 60826. Desig criteria of overhead transmissionn lines [S]. Switzerland: HIS,2003. [20] Lam K,Fang X. The effect of interference of four equispaced cylinders in cross flow on pressure and force coefficients[J]. Journal of Fluids and Structures,1995,9(2): 195-214. [21] Lam K,Gong W,So R. Numerical simulation of cross-flow around four cylinders in an in-line square configuration[J]. Journal of Fluids and Structures,2008,24(1): 34-57. [22] Lam K,Li J Y,So R M C. Force coefficients and Strouhal numbers of four cylinders in cross flow[J]. Journal of Fluids and Structures,2003,18(3-4): 305- 324. [23] Norberg C. Flow around a circular cylinder: aspects of fluctuating lift[J]. Journal of Fluids and Structures,2001,15(3): 459-469. |
|
|
|