|
|
Switching Synchronism Identification of Low Voltage Circuit Breaker Utilizing HHT Analysis to Vibration Signal |
Miao Xiren,Wu Xiaomei,Shi Dunyi,Guo Moufa,Wang Wuyu |
Fuzhou University Fuzhou 350116 China |
|
|
Abstract A method that effectively de-noising vibration signal and extracting fault feature is necessary when diagnose the switching synchronism fault of low voltage circuit breaker(LVCB). A vibration signal analysis method based on Hilbert-Huang transform(HHT) is put forward,in which intrinsic mode function(IMF) components are extracted by empirical mode decomposition(EMD) to reflect local characteristic of LVCB vibration signal,and top five of IMF components energy not only is representation of vibration feature,but also has de-noising work. By analyzing to LVCB vibration signal in time-domain,kurtosis and mean square value are used as auxiliary mechanic characteristic index. With feature vector of energy ratio of front five IMF components,kurtosis and mean square value,the neural network based on particle swarm optimization(PSO) and radial basis function(RBF) is expounded to model fault recognition of asynchronous switching for LVCB. By results of experiment and simulation,it is effective to analysis switching synchronism with intelligent technology of comprehensive such as time-domain analyze,EMD and PSO-RBF neural network,which is a new diagnosis method for circuit breaker in special for three phases switching synchronism vibration of LVCB.
|
Received: 08 October 2013
Published: 22 January 2015
|
|
|
|
|
[1] 常广,张振乾,王毅. 高压断路器机械故障振动诊断综述[J]. 高压电器,2011,47(8): 85-90. Chang Guang,Zhang Zhenqian,Wang Yi. Review on mechanical fault diagnosis of high-voltage circuit breakers based on vibration diagnosis[J]. High Voltage Apparatus,2011,47(8): 85-90. [2] 孙来军,胡晓光,纪延超. 改进的小波包-特征熵在高压断路器[J]. 中国电机工程学报,2007,27(12): 103-108. Sun Laijun,Hu Xiaoguang,Ji Yanchao. Fault diagnosis for high voltage circuit breakers with improved characteristic entropy of wavelet packet[J]. Procee- dings of the CSEE,2007,27(12): 103-108. [3] Liu Mingliang,Sun Laijun,Zhen Jianju,et al. Fault diagnosis of high voltage circuit breaker based on multiple entropy strips method[C]. Proceedings of The 6th IEEE Conference on Industrial Electronics and Applications,Beijing,China,2011: 504-508. [4] 杨飞,王小华,荣命哲,等. 一种新的中压真空断路器三相同期在线监测方法[J]. 中国电机工程学报,2008,28(12): 139-144. Yang Fei,Wang Xiaohua,Rong Mingzhe,et al. A novel on-line monitoring method for three phase synchronization of medium voltage vacuum circuit breaker[J]. Proceedings of the CSEE,2008,28(12): 139-144. [5] 马强,荣命哲,贾申利. 基于振动信号小波包提取和短时能量分析的高压断路器合闸同期性的研究[J]. 中国电机工程学报,2005,25(13): 150-154. Ma Qiang,Rong Mingzhe,Jia Shenli. Study of switching synchronization of high voltage breakers based on the wavelet packets extraction algorithm and short time analysis method[J]. Proceedings of the CSEE,2005,25(13): 150-154. [6] 缪希仁,王燕. 低压断路器振动特性分析与合闸同期性研究[J]. 电工技术学报,2013,28(6): 81-85. Miao Xiren,Wang Yan. Vibration characteristic analysis and closing synchronization research of low voltage circuit breadkers[J]. Transactions of China Electrotechnical Society,2013,28(6): 81-85. [7] 张君,韩璞,董泽,等. 基于小波变换的振动信号分析中能量泄漏的研究[J]. 中国电机工程学报,2004,24(10): 238-243. Zhang Jun,Han Pu,Dong Ze,et al. Energy leakage research of wavelet transform application on vibration signature analysis[J]. Proceedings of the CSEE,2004,24(10): 238-243. [8] Huang N E,Shen Z,Long S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A,1998,454: 903-995. [9] Vincent H T,Hu S J,Hou Z. Damage detection using empirical mode decomposition method and a com- parison with wavelet analysis[C]. Proceedings of the Second International Workshop on Structure Health Monitoring,Stanford USA,1999: 891-900. [10] 张惠峰,马宏忠,陈凯,等. 基于振动信号EMD- HT 时频分析的变压器有载分接开关故障诊断[J]. 高压电器,2012,48(1): 76-81. Zhang Huifeng,Ma Hongzhong,Chen Kai,et al. Fault diagnosis of power transformer on-load tap changer based on EMD-HT analysis of vibration signal[J]. High Voltage Apparatus,2012,48(1): 76-81. [11] 王磊,纪国宜. 基于Hilbert-Huang变换与人工神经网络的风机故障诊断研究[J]. 发电设备,2012,26(2): 100-104. Wang Lei,Ji Guoyi. Study on fan fault diagnosis based on Hilbert-Huang transform and artificial neural network[J]. Power Equipment,2012,26(2): 100-104. [12] Lee D S S,Lithgow B L,Morrison R E. New fault diagnosis of circuit breakers[J]. IEEE Transactions on Power Delivery,2003,18(2): 454-459. [13] 王晓霞,王涛. 基于粒子群优化神经网络的变压器故障诊断[J]. 高电压技术,2009,34(11): 2362-2367. Wang Xiaoxia,Wang Tao. Power transformer fault diagnosis based on neural network evolved by particle swarm optimization[J]. High Voltage Engineering,2009,34(11): 2362-2367. [14] 黄建,胡晓光,巩玉楠. 基于经验模态分解的高压断路器机械故障诊断方法[J]. 中国电机工程学报,2011,31(12): 108-113. Huang Jian,Hu Xiaoguang,Gong Yunan. Machinery fault diagnosis of high voltage circuit breaker based on empirical mode decomposition[J]. Proceedings of the CSEE,2011,31(12): 108-113. |
|
|
|