|
|
A Current Control Strategy Based on Feedforward Control for Plasma |
Chen Guitao, Liu Chunqiang, Sun Qiang, Zhong Yanru, Yin Zhonggang |
Xi’an University of Technology Xi’an 710048 China |
|
|
Abstract According to the control demands of plasma load, a constant current source control strategy for DC-DC converter to reduce the influence of load disturbance on precise control of current source is proposed, which is based on output voltage feedforward. Firstly, with the open loop transfer matrix of constant current source, the influence mechanism of output admittance on the load disturbance is discussed. Then, the output voltage feedforward based on plasma load equivalent circuit model and the small signal model of converter is introduced to the current loop. The output voltage feedforward compensation function is introduced to reduce the output admittance, and the influence on feedforward functions of plasma equivalent load model parameters is analyzed. Comparisons between the control with and without voltage feedforward compensation are presented. The simulation and experimental results show that, the proposed control strategy not only effectively restrains the influence of load disturbance on constant current source, but also improves the system dynamic response, and has a good effect in improving the film quality.
|
Received: 20 December 2013
Published: 05 November 2014
|
|
|
|
|
[1] Tummala R, Guduru R K, Mohanty P S. Nanostructured Co 3 O 4 electrodes for supercapacitor applications from plasma spray technique[J]. Journal of Power Sources, 2012, 209: 44-51. [2] Sarakinos K, Alami J, Konstantinidis S. High power pulsed magnetron sputtering: a review on scientific and engineering state of the art[J]. Surface and Coatings Technology, 2010, 204(11): 1661-1684. [3] Silva E D, Jose R M, Scotti A, et al. Power quality analysis of gas metal ARC welding process operating under different drop transfer modes[C]. Power Electronics Conference(COBEP), Brazili, 2011: 129- 135. [4] Mercier D, Van Overmeere Q, Santoro R, et al. In-situ optical emission spectrometry during galvanostatic aluminum anodising[J]. Electrochimica Acta, 2011, 56(3): 1329-1336. [5] Liu Shanzhong, Wang Yunhao. Research of CO 2 welding inverter power source under current waveform control[C]. Automation and Logistics(ICAL), 2012 IEEE Interna, 2012: 116-121. [6] PETROVIĆ Z L, ŠKORO N, MARIĆ D, et al. Breakdown, scaling and volt-ampere characteristics of low current micro-discharges[J]. Journal of Physics D: Applied Physics, 2008, 41(19): 194002. [7] Kelly P J, Arnell R D. Magnetron sputtering: a review of recent developments and applications[J]. Vacuum, 2000, 56(3): 159-172. [8] Barchiche C E, Veys-Renaux D, Rocca E. A better understanding of PEO on Mg alloys by using a simple galvanostatic electrical regime in a KOH-KF-Na 3 PO 4 electrolyte[J]. Surface and Coatings Technology, 2011, 205(17-18): 4243-4424. [9] 徐志宇, 庄玮琳, 许维胜, 等. 驱动恒流负载的DC-DC变换器的能控性[J]. 电工技术学报, 2011, 26(8): 44-49. Xu Zhiyu, Zhuang Weilin, Xu Weisheng, et al. Controllability of DC-DC converters with constant current load[J]. Transactions of China Electrotechnical Society, 2011, 26(8): 44-49. [10] 刘宝其, 段善旭, 李勋, 等. 逆变式等离子切割电源双闭环控制策略[J]. 中国电机工程学报, 2011, 31(9): 120-127. Liu Baoji, Duan Shanxu, Li Xun, et al. Double closed loop control strategy for plasma cutting inverter[J]. Proceedings of the CSEE, 2011, 31(9): 120-127. [11] Jia Deli, You Bo. An intelligent control strategy for plasma arc cutting technology[J]. Journal of Manufactu- ring Processes, 2011, 13(1): 1-7. [12] Ksrppanen M, Suntio T, Sippola M. Dynamical characterization of input voltage feedforward controlled buck converter[J]. IEEE Transactions on Industrial Electronics, 2007, 54(2): 1005-1013. [13] 刘青, 张东来. 抑制输入扰动的Buck变换器控制方法[J]. 电工技术学报, 2011, 26(4): 93-99. Liu Qing, Zhang Donglai. An improved control method of buck converter to reject input-disturbance[J]. Transactions of China Electrotechnical Society, 2011, 26(4): 93-99. [14] 姚川, 阮新波, 曹伟杰, 等. 双管 Buck-Boost 变换器的输入电压前馈控制策略[J]. 中国电机工程学报, 2013, 33(21): 36-44. Yao Chuan, Ruan Xinbo, Cao Weijie, et al. A input voltage feedforward control strategy for two-switch Buck-Boost DC-DC converters[J]. Proceedings of the CSEE, 2013, 33(21): 36-44. [15] 倪靖猛, 方宇, 邢岩, 等. 基于优化负载电流前馈控制的 400Hz 三相PWM航空整流器[J]. 电工技术学报, 2011, 26(2): 141-146. Ni Jingmeng, Fang Yu, Xing Yan, et al. Three-Phase 400Hz pwm rectifier based on optimized feedforward control for aeronautical application[J]. Transactions of China Electrotechnical Society, 2011, 26(2): 141-146. [16] Karppanen M, Hankaniemi M, Suntio T, et al. Dynamical characterization of peak-current-mode- controlled Buck converter with output-current feedfor- ward[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 444-451. [17] Pawlowski A, Guzmán J L, Normey-Rico J E, et al. Improving feedforward disturbance compensation capabilities in generalized predictive control[J]. Journal of Process Control, 2012, 22(3): 527-539. [18] Chung C H, Chen M S. A robust adaptive feedforward control in repetitive control design for linear systems [J]. Automatica, 2012, 48(1): 183-190. [19] Hankaniemi M, Suntio T, Sippola M. Analysis of the load interactions in constant current controlled buck converter[C]. Telecommunications Energy Conference, INTELE, 2006: 1-6. [20] Huo W G, Xu K, Sun B, et al. Influences of impedance matching network on pulse-modulated radio frequency atmospheric pressure glow discharges[J]. Physics of Plasmas, 2012, 19(8): 083502. |
|
|
|