|
|
GIS Partial Discharge Detection and Recognition Based on the Kernel Combination and Multiple Feature Fusion Method |
Lü Fangcheng, Jin Hu, Wang Zijian, Zhang Bo |
Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China |
|
|
Abstract GIS partial discharge pattern recognition is an important part of its insulation state evaluation, authors set up 252kV GIS partial discharge detection simulation experiment platform, and detected the partial discharge of four kinds of typical insulation defect models based on the ultra high frequency method and ultrasonic method, and then obtained the corresponding statistical map based on the characteristics of the signals, also extracted the corresponding feature parameters; then blended UHF and ultrasonic characteristic parameters based on the kernel combination parameters method which is optimized by K-fold cross-validation and particle swarm optimization method, then input parameters after fusion and single UHF and ultrasonic parameters to the pattern recognition classifier respectively. The results show that the recognition rates is higher than single feature after multiple characteristic parameters fusion, and the recognition rate is more than 92%.
|
Received: 03 April 2014
Published: 05 November 2014
|
|
|
|
|
[1] 司文荣, 李军浩, 袁鹏, 等. 基于波形非线性映射的多局部放电脉冲群快速分类[J]. 电工技术学报, 2009, 24(3): 217-228. Si Wenrong, Li Junhao, Yuan Peng, et al. The fast grouping technique of PD sequence based on the nonlinear mapping of pulse shapes[J]. Transactions of China Electrotechnical Society, 2009, 24(3): 217-228. [2] 唐炬, 周倩, 许中荣, 等. GIS特高频局放信号的数学建模[J]. 中国电机工程学报, 2005, 25(19): 106- 110. Tang Ju, Zhou Qian, Xu Zhongrong, et al. Establishment of mathematical model for partial discharge in GIS using UHF method[J]. Proceedings of the CSEE, 2005, 25(19): 106-110. [3] Judd M D, Cleary G P, Bennoch C J. Applying UHF partial discharge detection to power transformers[J]. IEEE Power Engineering Review, 2002, 22(8): 57-59. [4] 司文荣, 李军浩, 袁鹏, 等. 气体绝缘组合电器多局部放电源的检测与识别[J]. 中国电机工程学报, 2009, 29(16): 119-125. Si Wenrong, Li Junhao, Yuan Peng, et al. Detection and identification techniques for multi-PD sources in GIS[J]. Proceedings of the CSEE, 2009, 29(16): 119-125. [5] 李信, 李成榕, 丁立健, 等. 基于特高频信号检测GIS局放模式识别[J]. 高电压技术, 2003, 14(3): 16-20. Li Xin, Li Chengrong, Ding Lijian, et al. Identification of PD patterns in gas insulated swichgear(GIS) based on UHF signals[J]. High Voltage Engineering, 2003, 14(3): 16-20. [6] 孙才新, 许高峰, 唐炬, 等. 以盒维数和信息维数为识别特征量的GIS局部放电模式识别方法[J]. 中国电机工程学报, 2005, 25(3): 100-104. Sun Caixin, Xu Gaofeng, Tang Ju, et al. PD pattern recognition method using box dimension and informa- tion dimension as discriminating features in GIS[J]. Proceedings of the CSEE, 2005, 25(3): 100-104. [7] 段大鹏. 基于UHF方法的GIS局部放电检测与仿生模式识别[D]. 上海交通大学, 2009.[7] Duan Dapeng. GIS partial discharge detection and biomimetic pattern recognition based on UHF method [D]. Shanghai Jiao Tong University, 2009. [8] 张晓星, 唐炬, 孙才新, 等. 一种基于线性鉴别分析的GIS局部放电模式识别[J]. 重庆大学学报, 2006, 29(10): 1-4. Zhang Xiaoxing, Tang Ju, Sun Caixin, et al. PD pattern recognition based on linear discriminant analysis in GIS[J]. Jounal of Chongqing University, 2006, 29(10): 1-4. [9] 齐波, 李成榕, 骆立实, 等. GIS中局部放电与气体分解产物关系的试验[J]. 高电压技术, 2010, 36(4): 957-963. Qi Bo, Li Chengrong, Luo Lishi, et al. Experiment on the correlation between partial discharge and gas decomposition products in GIS[J]. High Voltage Engineering, 2010, 36(4): 957-963. [10] 齐波, 李成榕, 郝震, 等. GIS绝缘子表面固定金属颗粒沿面局部放电发展的现象及其特征[J]. 中国电机工程学报, 2011, 34(4): 312-317. Qi Bo, Li Chengrong, Hao Zhen, et al. The surface partial discharge development phenomena and their characterisitics of GIS insulator surface’ fixed metal particals[J]. Proceedings of the CSEE, 2011, 34(4): 312-317. [11] Damoulas T, Girolami M A. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection[J]. Bioinformatics, 2008, 24(10): 1264-1270. [12] Gulski E, Kreuger F H. Computer-aided recogni- tion of discharge sources[J]. IEEE Transactions on Electrical Insulation, 1992, 27(1): 82-92. [13] Cavallini A,Montanari G C,Contin A,et al.A new approach to the diagnosis of solid insulation systems based on PD signal inference[J]. IEEE Electrical Insulation Magazine, 2003, 19(2): 23-30. [14] 王彩雄, 唐志国, 常文治, 等. 一种多源局部放电信号分离方法[J]. 中国电机工程学报, 2013, 33(13): 212-219. Wang Caixiong, Tang Zhiguo, Chang Wenzhi, et al. A method for multi-source partial discharge signals separation[J]. Proceedings of the CSEE, 2013, 33(13): 212-219. [15] Theodoros Damoulas, Yiming Ying, Mark A. Girolami, et al. Inferring sparse kernel combinations and relevance vectors: An application to subcellular localization of proteins[C]. 2008 Seventh International Conference on Machine Learning and Applications, 2008: 577- 582. [16] Leisch F, Jain L C, Hornik K. Cross-validation with active pattern selection for neural network classifiers [J]. IEEE Transaction on Neural Network, 1998, 9(1): 35-41. [17] Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 1995: 1942-1948. [18] Kennedy J, Eberhart R C, Shi Y. Swarm intelligence [M]. San Francisco: Morgan Kaufmann Publishers, 2001. [19] 朱永利, 尹金良. 组合核相关向量机在电力变压器故障诊断中的应用研究[J]. 中国电机工程学报, 2013, 33(22): 68-74. Zhu Yongli, Yin Jinliang.Study on application of multi-kernel learning relevance vector machines in fault diagnosis of power transformers[J]. Proceedings of the CSEE, 2013, 33(22): 68-74. |
|
|
|