|
|
Voltage Collapse Indices Based Method for Practical Computation of Total Transfer Capability |
Jiang Zhen1, Miao Shihong1, Shang Yanan1, Hou Junxian2, Yu Zhihong2 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China; 2. China Electric Power Research Institute Beijing 100192 China |
|
|
Abstract A voltage collapse indices based method for practical computation of total transfer capability is proposed. Compared to the traditional continuation power flow method, the proposed method has the following four characteristics: the proposed method is based on the original Newton method for power flow calculation, and won't appear continuation power flow extended Jacobian matrix singular phenomenon; voltage collapse indices would be calculated according to Jacobian matrix, this parameter can lead the whole state dispatched process, the system load(and power generation) state accurate positioning to the turning point; the proposed method would select appropriate inference step size automatically according to Jacobian matrix to ensure the entire network load(and power generation) approaching to the system turning point accurately; the whole state dispatched process is based on the calculation of the Jacobian matrix without every state dispatched step having complete Newton iterative process, So that the computation speed can be improved significantly. Many system numerical analyses indicate that the proposed method has a high computational efficiency in the premise of ensuring the accuracy of the calculations.
|
Received: 01 February 2013
Published: 05 November 2014
|
|
|
|
|
[1] 周孝信, 郭剑波, 胡学浩, 等. 提高交流500 kV 线路输电能力的实用化技术和措施[J]. 电网技术, 2001, 25(3): 1-6. Zhou Xiaoxin, Guo Jianbo, Hu Xuehao, et al. Engineering technologies and measures for improving the transmitting capability of 500kV transmission lines[J]. Power System Technology, 2001, 25(3): 1-6. [2] North American Electric Reliability Council. Available transfer capability definitions and determination: A reference document prepared by TTC task force[R]. New Jersey: North American Electric Reliability Council, 1996. [3] Ilic M D, Yoon Y T, Zobian A. Available transmission capacity(ATC) and its value under open access[J]. IEEE Transactions on Power Systems, 1997, 12(2): 636-645. [4] Li W, Liu H, Yan Z, et al. ATC calculation with steady- state security constraints using Benders decomposition [J]. IEE Proceedings-Generation, Transmission and Distribution, 2003, 150(5): 611-615. [5] 吴杰康, 周举, 吴强, 等. 基于小干扰稳定约束可用传输容量的计算[J]. 电工技术学报, 2006, 21(9): 7-12. Wu Jiekang, Zhou Ju, Wu Qiang, et al. Available transfer capability calculation with small signal stability constraints[J] .Transactions of China Electrotechnical Society, 2006, 21(9):7-12. [6] 周明, 谌中杰, 李庚银, 等. 基于功率增长优化模式的交直流电网可用输电能力计算[J]. 中国电机工程学报, 2011, 31(22): 48-55. Zhou Ming, Chen Zhongjie, Li Gengyin, et al. Available transfer capability determination for AC/DC trans- mission systems based on power increase optimization mode[J]. Proceedings of the CSEE, 2011, 31(22), 48-55. [7] 郭琦, 赵晋泉, 张伯明, 等. 一种线路极限传输容量的在线计算方法[J]. 中国电机工程学报, 2006, 26(5): 1-5. Guo Qi, Zhao Jinquan, Zhang Boming, et al. A method for on-line computation of total transfer capability[J]. Proceedings of the CSEE, 2006, 26(5): 1-5. [8] 赵晋泉, 张伯明. 连续潮流及其在电力系统静态稳定分析中的应用[J]. 电力系统自动化, 2005, 29(11): 91-97. Zhao Jinquan, Zhang Boming. Summarization of continuation power flow and its applications in static analysis of power system[J]. Automation of Electric Power Systems, 2005, 29(11): 91-97. [9] Taylor G, Irving M. Performance analysis of a novel q-limit guided continuation power flow method[J]. IET Generation, Transmission & Distribution, 2009, 3(12): 1042-1051. [10] Mohn F W, de Souza A C Z. On fast decoupled continuation power flows[J]. Electric Power Systems Research, 2002, 63(2): 105-111. [11] 王成山, 魏炜. 一种改进的步长控制连续性潮流计算方法[J]. 电工技术学报, 2004, 19(2): 58-63. Wang Chengshan, Wei Wei. An improved continuation method with controlled step size[J]. Transactions of China Electrotechnical Society, 2004, 19(2): 58-63. [12] 董晓明, 梁军, 韩学山, 等. 连续潮流参数选择及步长控制的分析与改进[J]. 电力系统自动化, 2011, 35(13): 49-53. Dong Xiaoming, Liang Jun, Han Xueshan, et al. Analysis and improvement on parameter selection strategy and step size controlling in continuation power flow[J]. Automation of Electric Power Systems, 2011, 35(13): 49-53. [13] Alves, D.A., da Silva, L.C.P., Castro, C.A., et al. Continuation fast decoupled power flow with secant predictor[J]. IEEE Transactions on Power Systems, 2003, 18(3):1078-1085. [14] 赵晋全, 张伯明. 改进连续潮流计算鲁棒性的策略研究[J]. 中国电机工程学报, 2005, 25(22): 7-11. Zhao Jinquan, Zhang Boming. A study on the strategy for improving robustness of continuation power flow computation[J]. Proceedings of the CSEE, 2005, 25(22): 7-11. [15] Ejebe G C, Tong J, Waight J G, et al. Available transfer capability calculations[J]. IEEE Transactions on Power Systems, 1998, 13(4): 1521-1527. [16] 江伟, 王成山. 电力系统输电能力研究中PV 曲线的求取[J]. 电力系统自动化, 2001, 25(1): 9-12. Jiang Wei, Wang Chengshan. PV curves tracing in power system transfer capability analysis[J]. Automa- tion of Electric Power Systems, 2001, 25(1): 9-12. [17] 彭志炜, 胡国根, 韩祯祥. 电力系统PV曲线的追踪与极值分叉点的确定[J]. 电网技术, 1997, 21(8): 13-16. Peng Zhiwei, Hu Guogen, Han Zhenxiang. Tracing power system PV curve and searching for bifurcation points[J]. Power System Technology, 1997, 21(8): 13-16. [18] Liang Min, Abur A. Total transfer capability computa- tion for multi-area power systems. IEEE Transactions on Power Systems, 2006, 21(3): 1141-1147. [19] 潘雄, 徐国禹. 基于最优潮流并计及静态电压稳定性约束的区域间可用输电能力计算[J]. 中国电机工程学报, 2004, 24(12): 86-91. Pan Xiong, Xu Guoyu. OPF based ATC calculation with static voltage stability constraints[J]. Proceedings of the CSEE, 2004, 24(12): 86-91. [20] Mohn F W. Tracing PV and QV curves with the help of a CRIC continuation method[J]. IEEE Transactions on Power Systems, 2006, 21(3): 1115-1122. [21] De Souza ACZ. Discussion on some voltage collapse indices[J]. Electric Power Systems Research, 2000, 53(1): 53-58. |
|
|
|