|
|
A Novel High Voltage Ratio Single-Stage Inverter with Buck-Boost Ability |
Ding Xinping1, 2, Zhang Chenghui2, Xue Bicui3, Zhang Min1 |
1. Qingdao Technological University Qingdao 266520 China; 2. Shandong University Jinan 250061 China; 3. University of Jinan Jinan 250022 China |
|
|
Abstract This paper presents a high voltage ratio single-stage inverter (HVRSSI). Utilizing a unique LC structure instead of the traditional voltage source inverter DC link capacitor C yields a single-stage inverter with high step-up capability. The specific operating mode and buck-boost function implementation mechanism are studied. The shoot-through state is used to achieve substantial boost function of DC link peak voltage, and meanwhile improves the reliability of inverter. Unlike existing traditional single-stage inverter(ZSI), boost factor B of the proposed inverter and the shoot-through duty cycle Dsh are inversely proportional. A greater boost factor can be obtained with a small shoot-through duty cycle Dsh, hence the direct interactive relationship between shoot-through duty cycle Dsh and modulation index M is fundamentally overcame. Consistent with the traditional voltage source inverter, the output AC voltage of proposed high step-up inverter increases with the increasing of the M, which is different from the other single-stage inverters, and the consistency makes more rapid adjustment. Experimental results of the 1kW proposed inverter prototype are given for hardware verification. The theoretical analysis and simulation agrees well with experimental results.
|
Received: 25 October 2013
Published: 05 November 2014
|
|
|
|
|
[1] Blaabjerg F, Zhe C, Kjaer S B. Power electronics as efficient interface in dispersed Power generation systems[J]. IEEE Transactions on Power Electronics, 2004, 19(5): 1184-1194. [2] Peng F Z. Z-Source inverter[J]. IEEE Transactions on Industry Application, 2003, 39(2): 504-510. [3] Anderson J, Peng F Z. Four quasi-Z-source inverters [C]. In Proc. IEEE Power Electronics Specialists Conference, Rhodes, Greece, June 2008. [4] Haitham Abu-Rub, Atif Iqbal, Sk Moin Ahmed, et al. Quasi-Z-source inverter-based photovoltaic generation system with maximum power tracking control using ANFIS[J]. IEEE Transactions on Sustainable Energy, 2013, 4(1): 11-20. [5] 汤雨, 谢少军, 张超华. 改进型Z源逆变器[J]. 中国电机工程学报, 2009, 29(30): 29-34. Tang Yu, Xie Shaojun, Zhang Chaohua. Improved Z-source inverter[J]. Proceedings of the CSEE, 2009, 29(30): 29-34. [6] Jin-Woo Jung, Ali Keyhani. Control of a fuel cell based Z-source converter[J]. IEEE Transaction on Energy Conversion, 2007, 22(2): 467-475. [7] Huang Yi, Shen Miaosen, Peng F Z, et al, Z-source inverter for residential photovoltaic system [J]. IEEE Transactions on Power Electronics, 2006, 21(6): 1776-1782. [8] 丁新平, 钱照明, 崔彬, 等. 适应负载大范围变动的高性能Z源逆变器[J]. 电工技术学报, 2007, 22(10): 61-67. Ding Xinping, Qian Zhaoming, Cui Bin, et al. A high- performance Z-source inverter operating at wide- range load[J]. Transactions of China Electrotechnical Society, 2007, 22(10) : 61-67. [9] 丁新平, 卢燕, 钱照明, 等. Z源逆变器光伏并网系统光伏电池MPPT和逆变器并网的单级控制[J]. 电工技术学报, 2010, 25(4): 122-128. Ding Xinping, Lu Yan, Qian Zhaoming, et al. Single- stage control of MPPT and grid-connected on Z-source inverter PV system[J]. Transactions of China Electro- technical Society, 2010, 25(4): 122-128. [10] Baoming Ge, Lei Qin, Wei Qian, et al. A family of Z-source matrix converters[J]. IEEE Transactions on Industrial Electronics, 2012, 59(1): 35-46. [11] Shen M S, Wang J, Joseph A, et al. Maximum constant boost control of the Z-source inverter[J]. IEEE Transac- tions on Industry Application, 2006, 42(3): 770-778. [12] Dmitri Vinnikov, Indrek Roasto. Quasi-Z-source based isolated DC-DC converters for distributed power generation[J]. IEEE Transactions on Power Electronics, 2011, 58(1): 192-201. [13] Loh P C, Sok Wei Lim, Gao Feng, et al. Three-level Z-source inverters using a single LC impedance network[J]. IEEE Transactions on Power Electronics, 2011, 22(2): 706-711. [14] Gao F, Loh P C, Blaabjerg F, et al. Five-level Z-source diode-clamped inverter[J]. IET Power Electronics, 2010, 3(4): 500-510. [15] Peng F Z, Shen Miaosen, Qian Zhaoming. Maximum Boost control of the Z-source inverter[J]. IEEE Transac- tions on Power Electronics, 2006, 20(4): 833-838. [16] Miao Zhu, Kun Yu, Fang Lin Luo. Switched inductor Z-source inverter[J]. IEEE Transactions on Power Electronics, 2010, 25(8): 2150-2158. [17] 周玉斐, 黄文新. 耦合电感单级升压逆变器[J]. 中国电机工程学报, 2011, 31(33): 61-67. Zhou Yufei, Huang Wenxin. A novel single-stage Boost inverter with coupled inductors[J]. Proceedings of the CSEE, 2011, 31(33): 61-67. [18] Minh-Khai Nguyen, Young-Cheol Lim, Geum-Bae Cho. Switched-Inductor Quasi-Z-source inverter[J]. IEEE Transactions on Power Electronics, 2011, 26 (11): 3183-3191. [19] Qian Wei, Peng Fang Zheng, Cha Honnyong. Trans- Z-source inverters[J]. IEEE Transactions on Power Electronics, 2011, 26(12): 3453-3463. [20] Shen Miaosen, Peng Fang Z. Operation modes and characteristics of the Z-source inverter with small inductance or low power factor[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1): 89-96. [21] 王琛琛, 李永东. 多电平变换器拓扑关系及新型拓扑[J]. 电工技术学报, 2011, 26(1): 92-99. Wang Chenchen, Li Yongdong. Multilevel converter topologies and two novel topologies[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 92-99. [22] 白华, 赵争鸣. 三电平高压大容量变频调速系统中的预励磁方案[J]. 电工技术学报, 2007, 22(11): 91-97. Bai Hua, Zhao Zhengming. Research on starting strategies in the three-level high voltage high power inverters[J]. Transactions of China Electrotechnical Society, 2007, 22(11): 91-97. |
|
|
|