|
|
Investigation on Dust Contamination of Aerospace Electrical Connector after Long-Term Storage |
Zhou Yilin1, Wang Peng1, Ge Shichao1, Li Fang2 |
1. Beijing University of Posts and Telecommunications Beijing 100876 China; 2. Hangzhou Aerospace Electronic Technology Corporation Hangzhou 310015 China |
|
|
Abstract The effect of dust contamination on the electrical contact reliability of the aerospace electrical connectors after long term storage is investigated. The contact resistance and the separating force between the contacts formed by a pin and a socket in the connectors are measured. The element compositions, distribution density and size of dust particles inside the connectors and on the contact surfaces are also detected by scanning electronic microscope and X-ray energy dispersive spectroscopy. It is found that the contact resistance increases with the storage time, which is related to both the reduction of separating force and dust contamination. The dust particles can not only possibly enter the connector shells during the manufacture, assembly and storage periods, but also deposit on the contacts during the electroplating process. In the long-term stored environment, the dust contaminants combine the stress relaxation of spring materials of contacts and atmospheric corrosion to degrade the electrical contact performance of the connectors.
|
Received: 09 June 2013
Published: 05 August 2014
|
|
|
|
|
[1] Reagar B T, Russell C A. A survey of problems in telecommunication equipment resulting from chemical contamination[C]. Proc. 31th IEEE Holm Conf. on Electrical Contacts, 1985: 157-161. [2] 王鹏程. 刀闸辅助触点状态出错对母差保护的影响[J]. 电力系统保护与控制, 2010, 38(5): 124-126. Wang Pengcheng. Discussion on the influences of disconnector auxiliary contact status error on bus differential protection[J]. Power System Protection and Control, 2010, 38(5): 124-126. [3] 叶建光. 交流接触器不宜作异步电动机缺相保护元件[J]. 电力系统保护与控制, 2009, 37(19): 141-142. Ye Jianguang. Using AC connector for motor’s phase break protection is improper[J]. Power System Protection and Control, 2009, 37(19): 141-142. [4] 陈文华, 刘娟, 高亮, 等. 航天电连接器加速退化可靠性建模与试验数据统计分析[C]. 2010年全国机械行业可靠性技术学术交流会暨第四届可靠性工程分会第二次全体委员大会论文集, 2010: 44-48. [5] 陆俭国, 骆燕燕, 李文华, 等. 航天继电器贮存寿命试验及失效分析[J]. 电工技术学报, 2009, 24(2): 54-59. Lu Jianguo, Luo Yanyan, Li Wenhua, et al. Storage life test and failure analysis of aerospace relays[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 54-59. [6] 王召斌, 翟国富, 黄晓毅. 电磁继电器贮存期接触电阻增长的动力学模型[J]. 电工技术学报, 2012, 27(5): 206-211. Wang Zhaobin, Zhai Guofu, Huang Xiaoyi. Kinetic model of contact resistance increment of electro- magnetic relay in storage[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 206-211. [7] 陈文华, 程耀东, 李平真, 等. 航天电连接器的可靠性数学模型[J], 航空学报, 1997, 18(6): 732-734. Chen Wenhua, Cheng Yaodong, Li Pingzhen, et al. Reliability mathematics model of aerospace electrical connector[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(6): 732-734. [8] Zhou Y L, Lin X Y, Zhang J G. The electrical and mechanical performance of the corroded products on the gold plating after long term indoor air exposure [C]. Proc. of the 46th IEEE Holm Conference on Electric Contacts, 2000: 18-26. [9] 陈文华. 航天电连接器的振动可靠性建模[J]. 宇航学报, 2003, 24(1): 78-81. Chen Wenhua. The vibration reliability modeling of space electric connector[J]. Journal of Astronautics, 2003, 24(1): 78-81. [10] 王立朝. 科学认识我国北方沙漠化和沙尘暴——访沙漠化 “973” 项目首席科学家王涛研究员[J/OL]. 科学时报, http: //www. bjkp. gov. cn/kjbgt/k21252- 02. htm. [11] 游雪晴. 北京: PM2.5值逼近1000[J/OL]. 中国科技网, 2013-01-14. http: //www.stdaily.com/stdaily/content/ 2013-01/14/content_562209. htm. [12] 吕文超, 周怡琳. 手机内部尘土分布特性研究[J]. 机电元件, 2008. 28(4): 19-23. Lü Wenchao, Zhou Yilin. Investigation on the dust distribution characters inside the mobile phones[J]. Electromechanical Components, 2008, 28(4): 19-23. [13] Zhang J G, Gao J C, Feng C F. The “selective” deposition of particles on electric contact and their effects on contact failure[C]. 51st IEEE Holm Conference on Electrical Contact, 2005: 127-134. [14] Weschler C J, Shield H C. The impact of ventilation and indoor air quality on electronic equipment[J]. ASHRAE Transactions, part I: Symposia, 1991: 455-463. [15] Liang Y N, Zhang J G and Liu J J. Identification of inorganic compounds in dust collected in Beijing and their effects on electric contacts[C]. 43rd IEEE Holm Conference on Electric Contacts, Philadelphia, 1997: 315-327. [16] Wan J W, Gao J C, Lin X Y, et al. Water-soluble salts in dust and their effects on electric contact surfaces [C]. Proceedings of the International Conference on Electrical Contacts, Electromechanical Components and Their Applications, 1999: 37-42. [17] Zhang J G, Liang Y N, Wan J W, et al. Analysis of organic compounds in airborne dust collected in Beijing[C]. 44th IEEE Holm Conference on Electric Contacts, Arlington, VA, USA, 1998: 166-171. [18] Reagor B T. Dust- what, where, why and how[C]. Proceedings of the National Communications Forum, Rosemont, Illinois, Volume XXXXII, 1988: 981. [19] 周怡琳. 手机中电触点的失效分析[J]. 北京邮电大学学报, 2006, 29(1): 69-72. Zhou Yilin. Analysis on the electric contacts failure in mobile phones[J]. Journal of Beijing University of Posts and Telecommunications, 2006, 29(1): 69-72. [20] Wang D, Xu L J. Modeling of contact surface morphology and dust particles by using finite element method[J]. Journal of Zhejiang University Science A, 2007, 8(3): 403-407. [21] Neufeld C N, Rieder W F. Electrical characteristics of various contact contaminations[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, 1995, 18(2): 369-374. [22] Sawchyn I, Sproles E S. Optimizing force and geometry parameters in design of reduced insertion force connectors[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992, 15(6): 1025-1033. [23] Zhang J G, Zhuo K D, Du C X. The porosity of gold plating by dust contamination[C]. Proc of 34rd IEEE Holm Conference on Electrical Contact, 1988: 310-319. [24] 李雪清, 章继高. 镀金表面微孔腐蚀的电接触特点[J]. 电工技术学报, 2004, 19(9): 51-56. Li Xueqing, Zhang Jigao. The electric contact properties of pore corrosion on gold plated surface[J]. Transactions of China Electrotechnical Society, 2004, 19(9): 51-56. [25] Lin X Y, Zhang J G. Dust corrosion[C]. The 50th IEEE Holm Conference on Electrical Contacts, 2004: 255-262. [26] Burnett W H, Sandroff F S, D’Edigo S M. Circuit failure due to fine mode particulate air pollution[C]. The 18th International Symposium for Testing & Failure Analysis, Los Angeles, California, USA, 1992: 329-333. [27] Comizzoli R B, Frankenthal R P, Peins G A, et al. Reliability of electronics in harsh environments: electrical leakage and corrosion caused by hygroscopic pollutant particles[J]. Soldering & Surface Mount Technology, 1995, 7 (3): 13-16. [28] 张恺伦, 江全元. 基于攻击树模型的WAMS通信系统脆弱性评估[J]. 电力系统保护与控制, 2013, 41(7): 116-122. Zhang Kailun, Jiang Quanyuan. Vulnerability assessment on WAMS communication system based on attack tree model[J]. Power System Protection and Control, 2013, 41(7): 116-122. |
|
|
|