|
|
Spherical Surface Triangular BEM of Spherical Electrode in 3-D Electrostatic Fields |
Li Yasha1, 2, Wang Zezhong1, Li Xianshan2, Wang Bin2 |
1. North China Electric Power University Beijing 102206 China; 2. Three Gorges University Yichang 443002 China |
|
|
Abstract The spherical surface triangular BEM is put forward to be used to calculate electric field intensity of spherical electrodes in 3-D electrostatic fields. In this method, the shape functions on the spherical surface triangular elements are defined. The element integral is strictly carried through on the spherical surface, and the solved function is linearly interpolated on spherical surface element along the great arc, and directions of outward normal line to element and spherical surface are strictly unanimous. The calculated results show that the precision of the spherical surface triangular BEM is obviously higher than plane triangular BEM on the condition of the same nodes; and on the condition of the same precision the spherical surface triangular BEM requires less nodes, consequently required memory and calculated time can be decreased greatly.
|
Received: 17 January 2008
Published: 12 February 2014
|
|
|
|
|
[1] 姜保军, 孙力, 李波. 电磁检测中的开域电磁场数值计算[J]. 中国电机工程学报, 2005, 25(8): 156-160. [2] 王泽忠, 王炳革, 卢斌先, 等. 三维开域涡流场A-V位有限元与边界元耦合分析方法[J]. 中国电机工程学报, 2000, 20(5): 1-4. [3] 阮江军, 陈贤珍, 周克定. 三维瞬态涡流场的全H 棱边有限元边界元耦合算法研究[J]. 电工技术学报, 1997, 12(5): 45-48. [4] 姚德贵, 何为. 边界元法在求解基于三维非均匀人体胸腔模型的心电图正问题中的应用[J]. 电工技术学报, 2001, 16(3): 71-74. [5] Stefan Kurz, Oliver Rain, Sergej Rjasanow. The adaptive cross-approximation technique for the 3-D boundary element method[J]. IEEE Trans. on Magnetics, 2002, 38(2): 421-424. [6] André Buchau, Wolfgang M Rucker, Oliver Rain, et al. Comparison between different approaches for fast and efficient 3-D BEM computations[J]. IEEE Trans. on Magnetics, 2003, 39(3):1107-1110. [7] 杨仕友, 倪光正. 小波-伽辽金有限元法及其在电磁场数值计算中的应用[J]. 中国电机工程学报, 1999, 19(1): 56-61. [8] 赵志斌, 崔翔, 张波, 等. 多层土壤中含有不同电阻率块状媒质时的接地网分析[J]. 中国电机工程学报, 2004, 24(9): 218 -223. [9] 袁建生, 宗伟. 计算三维涡流场的三分量边界元法[J]. 中国电机工程学报, 1999, 19(5): 27-29. [10] 徐建源, 汪枫, 何荣涛, 等. 110kV三相共箱式GIS 内隔离开关部位电场及击穿特性的分析与研究[J]. 中国电机工程学报, 1999, 19(9): 31-35. [11] 赵中原, 邱毓昌, 方志, 等. 改进表面电荷法与三维空间电容的数值计算[J]. 中国电机工程学报, 2002, 22(6):67-70. [12] 杨德全, 赵忠生. 边界元理论及应用[M]. 北京: 北京理工大学出版社, 2002. [13] 金建铭. 电磁场有限元方法[M]. 西安电子科技大学出版社, 2001. [14] 李亚莎, 王泽忠. 基于圆环坐标系的三维静电场曲边三角形边界元方法[J]. 电工技术学报, 2006, 21(9): 122-126. [15] 刘姜玲. 合成绝缘子三维电场分区边界元法的研究[D]. 北京: 华北电力大学(北京), 2003. [16] 余恒清, 全泽松. 电磁波理论解题指南[M]. 成都: 电子科技大学出版社, 1995. |
|
|
|