|
|
Key Issues and Research Prospects of Active Distribution <br/>Network Planning |
Zhang Jianhua1, Zeng Bo1, Zhang Yuying1, Liu Dachuan1, Yang Xu1, Li Chen2, Liu Wenxia1 |
1. State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Customer Service Center of Sichuan Electric Power Corporation Chengdu 610041 China |
|
|
Abstract Environmental pressures and energy-saving policy calls for low-carbon transformation of the power industry. Integrated with the advanced information & communication, power electronics, and smart control technologies, active distribution network(ADN) provides an effective solution to enable large-scale integration and utilization of renewable energy sources, which has a significant potential to support the realization of low-carbon economy. In this study, the technical features of ADN and its difference with traditional distribution network are described first. Then, based on the information of some demonstration projects, an analysis is taken concerning the technical feasibility and decarbonization capability of ADN. Subsequently, a generalized framework of ADN planning is proposed. Considering the status quo of relevant researches, key issues in the five aspects of ADN planning, including load forecast, resource characteristics, integrated designing mode, optimal planning method and cost-benefit analysis, are discussed. Finally, some suggestions are given for the guidance of further studies in this area.
|
Received: 08 January 2014
Published: 18 June 2014
|
|
|
|
|
[1]DARA, Climate Vulnerability Monitor[EB/OL]. 2nd Edition http://www.daraint.org/wp-content/uploads/ 2012/10/CVM2-Low.pdf., 2013-11-5. [2]Secretary of State for Trade and Industry, Great Britain. Our Energy Future: Creating a Low-carbon Economy [EB/OL]. www.ukccsrc.ac.uk/system/files/ 03660.pdf, 2013-11-15. [3]国务院发展改革委员会. 中国应对气候变化国家方案[EB/OL]. http://www.ccchina.gov.cn/WebSite/ CCChina/UpFile/File189.pdf, 2013-12-10. [4]IEA. CO2 Emissions From Fuel Combustion [EB/OL]. http://www.iea.org/publications/freepublications/ publication/CO2EmissionsFromFuelCombustionHighlights2013.pdf. 2013-10-26. [5]丁然, 康重庆, 周天睿, 等. 低碳电网的技术途径分析与展望[J]. 电网技术, 2011,35(10):1-8. Ding Ran, Kang Chongqing, Zhou Tianrui, et al. Analysis and prospect on technical approaches for low carbon power grid[J]. Power System Technology. 2011, 35(10): 1-8. [6]Labis P E, Visande R G, Pallugna R C, et al. The contribution of renewable distributed generation in mitigating carbon dioxide emissions[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4891-4896. [7]王成山, 李鹏. 分布式发电, 微网与智能配电网的发展与挑战[J]. 电力系统自动化, 2010, 34(2): 10-14. Wang Chengshan, Li Peng. Development and challenges of distributed generation, the micro-grid and smart distribution system[J]. Automation of Electric Power Systems, 2010, 34(2): 10-14. [8]Walling R A, Saint R, Dugan R C, et al. Summary of distributed resources impact on power delivery systems[J]. IEEE Transactions on Power Delivery, 2008, 23(3): 1636-1644. [9]Celli G, Ghiani E, Mocci S, et al. From passive to active distribution networks: methods and models for planning network transition and development[C]. 42nd International Conference on Large High Voltage Electric Systems 2008, CIGRE 2008, Paris, France, 2008: 1-11 [10]尤毅, 刘东, 于文鹏, 等. 主动配电网技术及其进展[J]. 电力系统自动化, 2012, 36(18): 10-16. You Yi, Liu Dong, Yu Wenpeng, et al. Technology and its trends of active distribution network[J]. Automation of Electric Power Systems, 2012, 36(18): 10-16. [11]范明天, 张祖平, 苏傲雪, 等. 主动配电系统可行技术的研究[J]. 中国电机工程学报, 2013, 33(22): 12-18. Fan Mingtian, Zhang Zuping, Su Aoxue, et al. Enabling technologies for active distribution systems[J]. Proceedings of the CSEE, 2013, 33(22): 12-18. [12] CIGRE Task Force C6.11, Development and operation of active distribution networks[R], 2011. [13] Fan M, Zhang Z, Tian T. The analysis of the information needed for the planning of active distribution system[C]. IET 22nd International Conference and Exhibition on Electricity Distribution, (CIRED), 2013: 1-4. [14]孔涛, 程浩忠, 李钢, 等. 配电网规划研究综述[J]. 电网技术, 2009, 33 (19): 92-99. Kong Tao, Cheng Haozhong, Li Gang, et al. Review of power distribution network planning[J]. Power System Technology, 2009, 33 (19): 92-99. [15]朱坚强, 程浩忠, 武鹏, 等. 环保要求下城市送电网规划的初步方法[J]. 电力系统自动化, 2009, 33(16): 30-34. Zhu Jianqiang, Cheng Haozhong, Wu Peng, et al. A preliminary method for urban transmission network planning required by environmental protection[J]. Automation of Electric Power Systems, 2009, 33(16): 30-34. [16]张勇军, 石辉. 基于灰关联加权的配电网紧凑型节能改造投资规划[J]. 电力系统自动化, 2010, 34(22): 46-50. Zhang Yongjun, Shi Hui. Distribution network energy-saving investment compact planning based on grey connectedness weighting[J]. Automation of Electric Power Systems, 2010, 34(22): 46-50. [17]徐林, 阮新波, 张步涵, 等. 风光蓄互补发电系统容量的改进优化配置方法[J]. 中国电机工程学报, 2012, 32(25):88-98. Xu Lin, RuanXinbo, Zhang Buhan, et al. An improved optimal sizing method for wind-solar-battery hybrid power system[J]. Proceedings of the CSEE,2012, 32(25):88-98. [18]Hafez O, Bhattacharya K. Optimal planning and design of a renewable energy based supply system for microgrids[J]. Renewable Energy, 2012, 45:7-15. [19]缪源诚, 程浩忠, 龚小雪, 等. 含微网的配电网接线模式探讨[J]. 中国电机工程学报, 2012, 32(1): 17-23. Miao Yuancheng, Cheng Haozhong, Gong Xiaoxue, et al. Evaluation of a distribution network connection mode considering micro-grid[J]. Proceedings of the CSEE, 2012, 32(1): 17-23. [20]王兆宇, 艾芊. 智能配电网中微电网的多目标优化配置[J]. 电网技术, 2012, 36(8): 199-203. Wang Zhaoyu, Ai Qian. Multi-objective allocation of microgrid in smart distribution network[J]. Power System Technology, 2012, 36(8): 199-203. [21]Zhou Q, Guan W, Sun W. Impact of demand response contracts on load forecasting in a smart grid environment[C]. IEEE Power & Energy Society General Meeting, San Diego, USA, 2012: 1-4. [22]Arias J L C, Westermann D. Load forecasting scheme based on energy efficiency for planning the expansion of electrical systems[C]. IEEE Bucharest Power Tech, Bucharest, Romania, 2009: 1-8. [23]Paoletti S, Casini M, Giannitrapani A, et al. Load forecasting for active distribution networks[C]. 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, UK, 2011: 1-6. [24]Aghaei J, Alizadeh M I. Demand response in smart electricity grids equipped with renewable energy sources: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 64-72. [25]Roscoe A J, Ault G. Supporting high penetrations of renewable generation via implementation of real-time electricity pricing and demand response[J]. IET Renewable Power Generation, 2010, 4(4): 369-382. [26]田建伟, 胡兆光, 周景宏, 等. 电网—用户互操作性对负荷曲线影响的定量模拟[J]. 电力系统自动化, 2011,35(13):44-48. TianJianwei, Hu Zhaoguang, Zhou Jinghong, et al. Quantitative simulation of grid-consumer interoperability on load curve[J]. Automation of Electric Power Systems, 2011, 35(13):44-48. [27]Corradi O, Ochsenfeld H, Madsen H, et al. Controlling electricity consumption by forecasting its response to varying prices[J]. IEEE Transactions on Power Systems, 2013, 28(1): 421-429. [28]刘继东, 韩学山, 韩伟吉, 等. 分时电价下用户响应行为的模型与算法[J]. 电网技术, 2013, 37 (10): 2973-2978. Liu Jidong, Han Xueshan, Han Weiji, et al. Model and algorithm of customers’ responsive behavior under time-of-use price[J]. Power System Technology, 2013, 37 (10): 2973-2978. [29]姚珺玉, 刘俊勇, 刘友波, 等. 计及时滞指标综合灵敏度的用户电价响应模式划分方法[J]. 电网技术, 2010 (4): 30-36. Yao Junyu, Liu Junyong, Liu Youbo, et al. An approach to divide customer price response modes taking comprehensive sensitivity of the time delay index into account[J]. Power System Technology, 2010 (4): 30-36. [30]York D, Kushler M. Exploring the relationship between demand response and energy efficiency [R/OL], http://www.aceee.org/research-report/u052, 2005. [31]Alvarez-Herault M C, Picault D, Caire R, et al. A novel hybrid network architecture to increase DG insertion in electrical distribution systems[J]. IEEE Transactions on Power Systems, 2011, 26(2): 905-914. [32]宋强, 赵彪, 刘文华, 等. 智能直流配电网研究综述[J]. 中国电机工程学报, 2013, 33 (25): 9-19. Song Qiang, Zhao Biao, Liu Wenhua, et al. An overview of research on smart DC distribution power network[J]. Proceedings of the CSEE, 2013, 33(25): 9-19. [33]黄盛. 智能配电网通信业务需求分析及技术方案[J]. 电力系统通信, 2010, 31(22): 10-12. Huang Sheng. Analysis on the demand for communication services in smart distribution network and communication technical scheme[J]. Telecom- munication for Electric Power System, 2010, 31(22): 10-12. [34]Favuzza S, Graditi G, Ippolito M G, et al. Transition of a distribution system towards an active network. Part I: preliminary design and scenario perspectives[C]. IEEE International Conference on Clean Electrical Power, Ischia, 2011: 9-14. [35]Cosentino V, Favuzza S, Graditi G, et al. Transition of a distribution system towards an active network. Part II: economical analysis of selected scenario[C]. International Conference on Clean Electrical Power. Ischia: IEEE, 2011: 15-20. [36]Martins V F, Borges C L T. Active distribution network integrated planning incorporating distributed generation and load response uncertainties[J]. IEEE Transactions on Power Systems, 2011, 26(4): 2164-2172. [37]Borges C L T, Martins V F. Multistage expansion planning for active distribution networks under demand and distributed generation uncertainties[J]. International Journal of Electrical Power & Energy Systems, 2012, 36(1):107-116. [38] Fan M, Su A, Zhang Z. A planning approach for active distribution networks[C]. 21st International Conference on Electricity Distribution, Frankfurt, Germany, 2011: 1-4. [39]Al Kaabi S S, Zeineldin H H, Khadkikar V. Planning active distribution networks considering multi-DG configurations[J]. IEEE Transactions on Power Systems, 2014, 99: 1-9. [40]Capuder T, Zidar M, Škrlec D. Evolutionary algorithm with fuzzy numbers for planning active distribution network[J]. Electrical Engineering, 2012, 94(3): 135-145. [41]Li Y, Zio E. Uncertainty analysis of the adequacy assessment model of a distributed generation system[J]. Renewable Energy, 2012, 41: 235-244. [42]王彬, 何光宇, 梅生伟, 等. 智能电网评估指标体系的构建方法[J]. 电力系统自动化, 2011, 35(23): 1-5. Wang Bin, He Guangyu, Mei Shengwei, et al. Construction method of smart grid’s assessment index system[J]. Automation of Electric Power Systems, 2011, 35(23): 1-5. [43]王彬, 何光宇, 陈颖, 等. 智能电网评估指标体系中电力用户需求指标集的构建[J]. 电网技术, 2012, 36(6): 21-26. Wang Bin, He Guangyu, Chen Ying, et al. Construction of power consumers’ demand index set in assessment index system of smart grid[J]. Power System Technology, 2012, 36(6): 21-26. [44]Fan M, Liang H, Zhang Z, et al. Cost-benefit analysis of integration DER into distribution network[C]. CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid, Lisbon, Portugal, 2012: 1-4. [45]Celli G, Pilo F, Soma G G, et al. Active distribution network cost/benefit analysis with multi-objective programming[C].20th International Conference and Exhibition on Electricity Distribution, Stevenage, U.K., 2009: 1-5. [46]Hu Z, Li F. Cost-benefit analyses of active distribution network management, part I: Annual benefit analysis[J]. IEEE Transactions on Smart Grid, 2012, 3(3): 1067-1074. [47]Hu Z, Li F. Cost-benefit analyses of active distribution network management, part ii: investment reduction analysis[J]. IEEE Transactions on Smart Grid, 2012, 3(3): 1075-1081. [48] 张建华, 曾博, 董军, 等. 环境友好型城网规划双层决策模型及其协调局势算法[J]. 中国电机工程学报, 2012, 32(10):56-64. ZhangJianhua, Zeng Bo, Dong Jun, et al. Bileveldecision-making model and coordination situation algorithm for environment-friendly urban network planning[J]. Proceedings of the CSEE, 2012, 32(10): 56-64. |
|
|
|