|
|
Load Side Arc Fault Voltage Detection and Identification with Morphological Wavelet |
Miao Xiren, Guo Yinting, Tang Jincheng, Zhang Liping |
Fuzhou University, Fuzhou 350108 China |
|
|
Abstract The existing fault detection and identification methods for series arc current are based on the feature extraction of signal singularities for arc current with zero moment, mutation rate of climb and harmonic component, etcval However, there is an erroneous judgement which is caused by the current signal singularities of nonlinear load in rated duration, inductive load in startup process, etc. in distribution line. According to the principle of load side voltage not to be impacted by the current signal singularities in normal operation for distribution circuit, a novel arc fault detection and identification method for load side voltage is put forward, which can not only obtain series arc fault feature, but also avoid the defection of existing arc fault current method. By arc fault identification decision-making functions modeling with morphological wavelet, the combination identification model of morphology open-filter with the fourth dimension wavelet transform is selected to analyze arc fault experiment detection signal of six kinds load side voltage. Finally, the fourth dimension wavelet component criterion thresholds of arc fault signal for load side voltage are provided, that are ten times the normal condition for kinds of load.
|
Received: 09 June 2013
Published: 17 June 2014
|
|
|
|
|
[1] George D, Gray W. The arc-fault circuit interrupter [J]. IEEE Transactions on Industry Applications, 1998, 34(5): 928-933. [2] George D, Kon Wong, Rober F. More about arc-fault circuit interrupters[C]. IEEE Transactions on Industry Applications, 2004, 40(4): 1006-1011. [3] Underwriter Laboratories Inc. UL standard for safety for arc-fault circuit-interrupters UL1699[M]. 2nd Edition, 2006, 7. [4] Cheng Hong, Chen Xiaojuan, Liu Fangyun, et al. Series arc fault detection and implementation based on the short-time fourier transform[C]. Power and Energy Engineering Conference (APPEEC), 2010. [5] Shaohua Ma, Lina guan. Arc-fault recognition based on BP neural network[C]. Third International Conference on Measuring Technology and Mechatronics Automa- tion, 2011. [6] 徐贞华. 支持向量机的低压故障电弧识别方法[J]. 电力系统及其自动化. 2012, 24(2): 128-131. Xu Zhenhua. Detection of Low-voltage arc fault based on support vector machine[J]. Proceeding of the CSU-EPSA. 2012, 24(2): 128-131. [7] Sun Peng, Gao Xiang. Series arc fault diagnosis technology research based on the analysis of current rate[C]. 1st International Conference on Electric Power Equipment-Switching Technology, 2011. [8] 孙鹏, 郑志成, 闫荣妮, 等. 采用小波熵的串联型电弧故障检测方法[J]. 中国电机工程学报, 2011 30(增刊):232-236. Sun Peng, Zheng Zhicheng, Yan Rongni, et al. Detection method of arc fault in series with wavelet entropy[J]. Proceedings of the CSEE, 2010(30 Supplement): 232-236. [9] 孙鹏, 董荣刚, 郑志成. 基于小波分析信号特征频段能量变比的电弧故障诊断技术研究[J]. 高压电器, 2010, 46(7): 46-50. Sun Peng, Dong Rong gang, Zheng Zhicheng. Arc fault diagnosis technology based on the analysis of energy variation of signal's characteristic frequency band with wavelet transform[J]. High Voltage Apparatus, 2010, 46(7): 46-50. [10] 孙鹏, 郑志成, 高翔. 基于小波分析的故障电弧检测方法[J]. 高压电器, 2012, 48(1): 25-29. Sun Peng, Zheng Zhicheng, Gao Xiang. Arc fault detection based on wavelet analysis[J]. High Voltage Apparatus, 2012, 48(1): 25-29. [11] 曹志彤, 何国光, 陈宏平. 电机故障特征值的倍频小波分析[J]. 中国电机工程学报, 2003, 23(7): 112-116. Cao Zhitong, He Guoguang, Chen Hongping, et al. Multiple bandwidth wavelet analysis for fault diagnosis eigenvalue in squirrel-cage induction motor[J]. Proceedings of the CSEE, 2003, 23(7): 112-116. [12] 曾瑞江, 杨震斌, 柳慧超. 基于小波变换的电力系统谐波检测方法研究[J]. 电力系统保护与控制, 2012, 40(15): 35-39. Zeng Ruijiang, Yang Zhenbin, Liu Huichao. A method of power system harmonic detection based on wavelet transform[J]. Power System Protection and Control, 2012, 40(15): 35-39. [13] 王振朝, 岳莹昭, 师洁, 等. 基于多分辨率分析的小波系数压扩去噪算法[J]. 中国电机工程学报, 2008, 28(10): 76-81. Wang Zhenchao, Yue Yingzhao, Shi Jie, et al. Wavelet coefficients companding de-noising algorithm based on multiresolution analysis[J]. Proceedings of the CSEE, 2008, 28(10): 76-81. [14] 康忠健, 王升花, 樊建川. 基于形态小波的输电线路故障电流行波消噪研究[J]. 电力系统保护与控制, 2008, 36(19): 36-39. Kang Zhongjian, Wang Shenghua, Fan Jianchuan. Study on the noise reduction of power line fault current traveling wave based on morphological wavelet[J]. Power System Protection and Control, 2008, 36(19): 36-39. [15] 吕艳新, 顾晓辉. 多传声器小波多尺度信息融合滤波算法[J]. 仪器仪表学报, 2012, 33(4): 787-792. Lv Yanxin, Gu Xiaohui. Filtering algorithm for multi-microphones based on wavelet multi-scale information fusion[J]. Chinese Journal of Scientific Instrument, 2012, 33(4): 787-792. [16] 汤井田, 李晋, 肖晓, 等. 基于数学形态滤波的大地电磁强干扰分离方法[J]. 中南大学学报, 2012 43(6): 2215-2221. Tang Jingtian, Li Jin, Xiao Xiao, et al. Magnetotelluric sounding data strong interference separation method based on mathematical morphology filtering[J]. Journal of Central South University(Science and Technology), 2012, 43(6): 2215-2221. [17] 李季, 潘孟春, 唐莺, 等. 基于形态滤波和HHT的地磁信号分析与预处理[J]. 仪器仪表学报, 2012, 33(10): 2175-2179. Li Ji, Pan Mengchun, Tang Ying, et al. Analysis and preprocessing of geomagnetic signals based on morphological filter and Hilbert-Huang transform[J]. Chinese Journal of Scientific Instrument, 2012, 33(10): 2175-2179. |
|
|
|