|
|
A Review of the Development of Wave Power System and the Research on Direct-Drive Wave Power System |
Xiao Xi1, Bai Nianzong1, Kang Qing2, Nie Zangxiang1, Huang Xuanrui1 |
1.State Key Lab of Control and Simulation of Power System and Generation Equipments, Tsinghua University, Beijing 100084 China;
2.Institution of Telecommunication Satellite China Academy of Space Technology, Beijing 100094 China |
|
|
Abstract This paper discusses the historical and recent development of wave energy utilization, and compares the characteristics of different wave power take-offs(PTOs), such as hydraulic, pneumatic, gear-box and direct-drive PTOs, which are classified by the form of energy transformation. Furthermore, it is particularly focused on the direct-drive PTO which has great potential in offshore high-power grid-connecting application, on analyzing its structures and the control schemes of optimizing power capture, on summarizing and comparing the linear generators and different control schemes of power optimizing. It is also described and analyzed that the processing schemes of the power fluctuation of direct-drive wave power, according to the control requirements of the grid. In addition, this paper concludes with application prospects and future developments of wave power, especially the direct-drive system.
|
Received: 21 December 2013
Published: 17 June 2014
|
|
|
|
|
[1] 王传昆,卢苇. 海洋能资源分析方法及储量评估[G]. 北京: 海洋出版社, 2009. [2] 程友良, 党岳, 吴英杰. 波力发电技术现状及发展趋势[J]. 应用能源技术, 2009(12): 26-30. Cheng Youliang, Dang Yue, Wu Yingjie. Status and trends of the power generation from wave[J]. Applied Energy Technology, 2009(12): 26-30. [3] Clément A, Mccullen P, Falcão A, et al. Wave energy in Europe: current status and perspectives[J]. Renewable and Sustainable Energy Reviews, 2002, 6(5): 405-431. [4] 中国国家统计局. 中国能源统计年鉴[G]. 北京: 中国统计出版社, 2008. [5] Stephen H Salter. Apparatus for use in the extraction of energy from waves on water: USA, US4134023(A) [P]. 1979-01-09. [6] Washio Y, Osawa H, Ogata T. The open sea tests of the offshore floating type wave power device "Mighty Whale"-characteristics of wave energy absorption and power generation[C]. IEEE Conference and Exhibition Oceans, 2001, 1: 579-585. [7] Dalton G J, Alcorn R, Lewis T. Case study feasibility analysis of the pelamis wave energy convertor in Ireland, Portugal and North America[J]. Renewable Energy, 2010, 35(2): 443-455. [8] Kofoed J P, Frigaard P, Friis Madsen E, et al. Prototype testing of the wave energy converter wave dragon[J]. Renewable Energy Marine Energy, 2006, 31(2): 181-189. [9] Mcarthur S, Brekken T K A. Ocean wave power data generation for grid integration studies[C]. IEEE Power and Energy Society General Meeting, Honolulu, US, 2010: 1-6. [10] 游亚戈, 李伟, 刘伟民,等. 海洋能发电技术的发展现状与前景[J]. 电力系统自动化, 2010(14): 1-12. You Yage, Li Wei, Liu Weimin, et al. Development status and perspective of marine energy conversion systems [J]. Automation of Electric Power Systems, 2010(14): 1-12. [11] Kim T, Takao M, Setoguchi T, et al. Performance comparison of turbines for wave power conversion[J]. International Journal of Thermal Sciences, 2001, 40(7): 681-689. [12] Alcorn R G, Finnigan T D. Control strategy development for an inverter controlled wave energy plant[C]. International Conference on Renewable Energies and Power Quality, Barcelona, Spain, 2004. [13] Oyster wave energy converter[M]. Saarbrucken (German): Volutpress, 2013. [14] Drew B, Plummer A R, Sahinkaya M N. A review of wave energy converter technology[J]. Journal of Power and Energy, 2009, 223(8): 887-902. [15] Rhinefrank K, Prudell J, Schacher A. Development and characterization of a novel direct drive rotary wave energy point absorber MTS-IEEE oceans conference proceedings[C]. MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges OCEANS, Biloxi, US, 2009: 1-5. [16] Tedeschi E, Molinas M, Carraro M, et al. Analysis of power extraction from irregular waves by all-electric power take off[C]. Energy Conversion Congress and Exposition, Atlanta, US, 2010: 2370-2377. [17] Columbia Power Technologies. Direct drive rotary wave energy conversion: USA, US20100213710[P]. 2012-8-26. [18] Polinder H, Damen M E C, Gardner F. Linear PM generator system for wave energy conversion in the AWS[J]. IEEE Transactions on Energy Conversion, 2004, 19(3): 583-589. [19] Prudell J, Stoddard M, Amon E, et al. A permanent-magnet tubular linear generator for ocean wave energy conversion[J]. IEEE Transactions on Industry Applications, 2010, 46(6): 2392-2400. [20] Clifton P C J, Mcmahon R A, Kelly H. Design and commissioning of a 30kW direct drive wave generator[C]. 5th IET International Conference on Power Electronics, Machines and Drives, Brighton, UK, 2010: 1-6. [21] Sun Z G, Cheung N C, Zhao S W, et al. Design and simulation of a linear switched reluctance generator for wave energy conversion[C]. 4th International Conference on Power Electronics Systems and Applications, Hong Kong, China, 2011: 1-5. [22] 叶云岳. 直线电机原理与应用[M]. 北京: 机械工业出版社, 2005. [23] Boroujeni S T, Milimonfared J, Ashabani M. Design, prototyping, and analysis of a novel tubular permanent- magnet linear machine[J]. IEEE Transactions on Magnetics, 2009, 45(12): 5405-5413. [24] Danielsson O, Eriksson M, Leijon M. Study of a longitudinal flux permanent magnet linear generator for wave energy converters[J]. International Journal of Energy Research, 2006, 30(14): 1130-1145. [25] 张振,肖阳,谌瑾. 基于直线电机的波浪能发电系统综述[J]. 船电技术. 2010, 30(6): 1-5. Zhang Zhen, Xiao Yang, Chen Jin. Review of new wave energy conversion system based on linear generators[J]. Marine Electric & Electronic Engineering, 2010, 30(6): 1-5. [26] Prudell J, Stoddard M, Amon E, et al. A permanent- magnet tubular linear generator for ocean wave energy conversion[J]. IEEE Transactions on Industry Application, 2010, 46(6): 2392-2400. [27] 袁榜, 余海涛, 胡敏强. 海浪发电用Halbach磁体结构圆筒型直线发电机性能分析[J]. 微电机, 2011(2): 20-23. Yuan bang, Yu Haitao, Hu Minqiang. Characteristics analysis of tubular linear generator with Halbach magnet array for wave converter[J]. Micromotors, 2011(2): 20-23. [28] Prudell J, Stoddard M, Brekken T K A, et al. A novel permanent magnet tubular linear generator for ocean wave energy[C]. Energy Conversion Congress and Exposition, San Jose, US, 2009: 3641-3646. [29] Vermaak R, Kamper M J. Novel permanent magnet linear generator topology for wave energy conversion [C]. 5th IET International Conference on Power Electronics, Machines and Drives, Brighton, UK, 2010: 1-6. [30] Seabased AB. A wave-power unit and generator comprising the wave-power unit, generation method and module system of linear generator for producing wave-power units: Swedish, EP1474607(B1) [P]. 2007-08-08. [31] Marine Power System Limited. Wave powered generator: WO2013068748(A3) [P]. 2013-10-17. [32] Seabased AB. A wave power unit, a buoy, use of a wave power unit and a method for producing electric energy: Swedish, EP2134960(A1) [P]. 2009-12-23. [33] 中国科学院广州能源研究所. 一种漂浮直驱式波浪能装置: 中国, CN101737239A[P]. 2010-06-16. [34] Swedish Seabased Energy AB. Wave power assembly:Swedish, EP1611348(A1) [P]. 2006-01-04. [35] Protean Power Pty Ltd. Improvements to wave energy converter: USA, US2010287927(A1) [P]. 2010-11-18. [36] 周德佳, 赵争鸣, 袁立强, 等. 具有改进最大功率跟踪算法的光伏并网控制系统及其实现[J]. 中国电机工程学报, 2008, 28(31): 94-100. Zhou Dejia, Zhao Zhengming, Yuan Liqiang, et al. Implementation of a photovoltaic grid-connected system based on improved maximum power point tracking[J]. Proceedings of the CSEE, 2008, 28(31): 94-100. [37] 田友飞, 李啸骢, 徐俊华, 等. 变速恒频双馈风电机组最大风能捕获非线性控制策略[J]. 电力系统自动化, 2011(11): 27-32. Tian Youfei, Li Xiaocong, Xu Junhua, et al. Nonlinear control strategy of variable-speed constant- frequency wind turbine driven doubly-fed induction generator for maximum wind energy capture[J]. Automation of Electric Power Systems, 2011(11): 27-32. [38] Tedeschi E, Molinas M. Impact of control strategies on the rating of electric power take off for wave energy conversion[C]. IEEE International Symposium on Industrial Electronics, Bari, Italy, 2010: 2406-2411. [39] Shek J K H, Macpherson D E, Mueller M A, et al. Reaction force control of a linear electrical generator for direct drive wave energy conversion[J]. IET Renewable Power Generation, 2007, 1(1): 17-24. [40] Valério D, Beirão P, Sá Da Costa J. Optimisation of wave energy extraction with the Archimedes Wave Swing[J]. Ocean Engineering, 2007, 34(17-18): 2330-2344. [41] Falnes J. Optimal control of oscillation of wave- energy converters[J]. International Journal of Offshore and Polar Engineering, 2002, 12(2): . [42] Thorburn K, Leijon M. Farm size comparison with analytical model of linear generator wave energy converters[J]. Ocean Engineering, 2007, 34(5-6): 908-916. [43] Wu F, Zhang X P, Ju P. Application of the battery energy storage in wave energy conversion system[C]. International Conference on Sustainable Power Generation and Supply, Nanjing, China, 2009: 1-4. [44] Glavin M E, Chan P K W, Armstrong S, et al. A stand-alone photovoltaic supercapacitor battery hybrid energy storage system[C]. 13th Power Electronics and Motion Control Conference, Poznan, Poland, 2008: 1688-1695. [45] Murray D B, Hayes J G, Egan M G, et al. Supercapacitor testing for power smoothing in a variable speed offshore wave energy converter[J]. IEEE Journal of Oceanic Engineering, 2012, 37(2): 301-308. [46] Zanxiang N, Xi X, Hu Y, et al. Direct drive wave energy converters integrated with a composite energy storage system[C]. International Conference on Electrical Machines and Systems, Beijing, China, 2011: 1-5. [47] 康庆, 肖曦, 聂赞相, 等. 直驱海浪发电功率平抑控制策略研究[J]. 电力系统自动化, 2013, 37(3): 24-29. Kang Qing, Xiao Xi, Nie Zanxiang, et al. An optimal control strategyf or output power of the directly driven wave power generation system[J]. Automation of Electric Power Systems, 2013, 37(3): 24-29. [48] Nie Zanxiang, Xiao Xi, Richard M. Emulation and control methods for direct drive linear wave energy converters[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 790-798. |
|
|
|