|
|
Identification of the Proportion of the Dynamic Load in Generalized Load Based on Adaptive BP Network |
Liu Daigang1, Liu Dichen2, Zhang Wenjia3, Wang Rusong4 |
1. Jiangsu Electric Power Design Institute Nanjinag 211102 China 2. Wuhan University Wuhan 430072 China 3. Jiangsu Electric Power Company Econominc Research Institute Nanjing 210008 China 4. Central Southern China Electric Power Design Institute Wuhan 430071 China |
|
|
Abstract This paper presents a method which uses adaptive BP(ABP) network to fit the relationship between the proportion of dynamic load and the active power PL, reactive power QL, voltage UL, frequency fL of the transmission line, equivalent power PG of Equivalent generalized load, then uses the trained ABP to identify β in transient stability analysis. This method firstly creates the equivalent generalized load model of the regional power system; secondly, changes the β to form the training data of ABP; finally uses thes trained ABP to identify β in transient stability analysis of the regional power grid. Simulation results on CEPRI 36 nodes system and power grid of Qingshan show its feasibility and effectiveness.
|
Received: 09 October 2011
Published: 25 March 2014
|
|
|
|
|
[1] 鞠平, 何孝军, 黄丽, 等. 广义电力负荷的模型结构与参数确定[J]. 电力系统自动化, 2006, 30(23): 11-13. [2] 鞠平. 电力系统负荷建模理论与实践[J]. 电力系统自动化, 1999, 23(19): 1-7. [3] Hagan M T, Demuth H B, Beale M H, et al. Neural network design[M]. 戴葵, 译. 北京: 机械工业出版社, 2002. [4] Park D C, El Sharkawi M A, Marks R J II, et al. Electric load forecasting using an artificial neural network[J]. IEEE Transactions on Power Systems, 1991, 6(2): 442-448. [5] Hiyama T, Tokieda M, Hubbi W, et al. Artificial neural network based dynamic load modeling[J]. IEEE Transactions on Power Systems, 1997, 12(4): 1576-1583. [6] Hsiung Cheng Lin. Intelligent neural network-based fast power system harmonic detection[J]. IEEE Tran- sactions on Industrial Electronics, 2007, 54(1): 43-52. [7] 艾芊, 陈陈, 沈善德, 等. 简化前馈网络用于负荷模型参数辨识的研究[J]. 中国电机工程学报, 2005, 25(5): 21-27. [8] 范澍, 毛承雄, 陆继明, 等. 多机电力系统神经网络最优励磁控制器[J]. 中国电机工程学报, 2004, 24(7): 80-84. [9] 史真惠, 朱守真, 郑竞宏, 等. 改进BP神经网络在负荷动静比例确定中的应用[J]. 中国电机工程学报, 2004, 24(7): 25-29. [10] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [11] 昆德. 电力系统稳定和控制[M]. 北京: 中国电力出版社, 2002. [12] 鞠平, 马大强. 电力系统负荷建模[M]. 北京: 中国电力出版社, 2008. [13] 顾丹珍, 艾芊, 陈陈, 等. 自适应神经网络在负荷动态建模中的应用[J]. 中国电机工程学报, 2007, 27(16): 31-36. [14] 黄辉, 舒乃秋, 李自品, 等. 基于信息融合技术的电力系统暂态稳定评估[J]. 中国电机工程学报, 2007, 27(16): 19-23. [15] 汪小明, 刘涤尘, 吴军, 等. 电力系统暂态稳定分析广义负荷模型[J]. 电网技术, 2011, 35(3): 44-48. |
|
|
|