|
|
An Improved Electronic Voltage Transformer Based on Direct Detecting Capacitor Current |
Shao Xia, Zhou Youqing, Peng Honghai |
Hanan Unirersity Changsha 410082 China |
|
|
Abstract An improved electronic voltage transformer (EVT) based on direct detecting capacitor current is designed in this paper. The EVT offers a variety of advantages, such as: small size, simple structure, no ferroresonance, high insulating strength, high anti-interference capability, good temperature characteristics, and the transient performance is not influenced by the retained charge of the high voltage capacitors, etc. The working principles are analyzed in detail, and the solution of the EVT is designed. The temperature compensation method that employing a number of capacitors half with positive temperature coefficient while the other half with negative temperature coefficient in serial connection to comprise the high voltage capacitor is proposed, which can improve the stability over temperature. The theory and simulation analysis on the frequency characteristic, transient performance, and anti-interference capability of the EVT were carried out. Subsequently a 10kV electronic voltage transformer has been developed. And the accuracy test, power-frequency withstand voltage test, and temperature test were conducted. The simulation and the tests show that the proposed EVT is fully compliant with IEC 60044—7 standard, assuring 0.2 measurement precision class and 3P protective class.
|
Received: 20 September 2012
Published: 25 March 2014
|
|
|
|
|
[1] Marco Faifer, Sergio Toscani, Roberto Ottoboni. Electronic combined transformer for power-quality measurements in high-voltage systems[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6): 2007 -2013. [2] Branislav Djokic, Eddy So. Calibration system for electronic instrument transformers with digital output[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(2): 479-482. [3] 刘延冰, 李红斌, 余春雨, 等. 电子式互感器原理、技术及应用[M]. 北京: 科学出版社, 2009. [4] 徐大可, 赵建宁, 张爱祥, 等. 电子式互感器在数字化变电站中的应用[J]. 高电压技术, 2007, 33(1): 78-82. [5] 马朝华, 杨育霞. 基于MATLAB/SIMULINK的CVT铁磁谐振过程的仿真研究[J]. 高压电器, 2007, 43(3): 89-100. [6] 刘孝先, 曾清, 邹晓莉, 等. 电子式互感器的应用[J]. 电力系统及其自动化学报, 2010, 22(1): 133-137. [7] Josemir Coelho Santos, M. Cengiz Taplamacioglu, Kunihiko Hidaka. Pockels high-voltage measurement system[J]. IEEE Transactions on Power Delivery, 2000, 15(1): 8-13. [8] Rahmatian Farnoosh, Chavez Patrick P, Jaeger Nicolas A F. 230kV optical voltage transducers using multiple electric field sensors[J]. IEEE Transactions on Power Delivery, 2002, 17(2): 417-422. [9] 刘丰, 毕卫红, 于建云. 基于逆压电效应和模间干涉的电压互感器设计[J]. 电网技术, 2008, 32(11): 90-94. [10] 李旭光, 秦松林, 肖登明. 光电互感器在特高压电网中的应用技术分析[J]. 高电压技术, 2007, 33(6): 13-15. [11] 方春恩, 李伟, 王佳颖, 等. 基于电阻分压的10kV 电子式电压互感器[J]. 电工技术学报, 2007, 22(5): 58-63. [12] 李伟凯, 郑绳楦. 高压电压互感器中电容分压器随温度变化数学模型的研究[J]. 电子测量与仪器学报, 2005, 19(5): 18-20. [13] 罗苏南, 南振乐. 基于电容分压的电子式电压互感器的研究[J]. 高电压技术, 2004, 30(10): 7-11. [14] 吴涛, 周有庆, 曹志辉, 等. 新型电子式电压互感器及其误差分析[J]. 电网技术, 2010, 34(4): 209-213. [15] 聂一雄, 尹项根, 张哲. 模拟积分器应用探讨[J]. 电子测量技术, 2000(3): 3-6. [16] 张明明, 张艳, 李红斌, 等. Rogowski电流互感器的积分器技术[J]. 高电压技术, 2004, 30(9): 13-16. [17] IEC 60044—7, Instrument transformers-Part 7: Electronic voltage transformers[S]. [18] 贺满潮, 张建平, 赵江涛. 温度变化对CVT准确度的影响[J]. 电力电容器, 2006(1): 13-17. [19] 陈永真. 电容器及其应用[M]. 北京:科学出版社, 2005. [20] 韩世忠, 徐雁, 向柯. 一种应用于高电压的温度测量系统[J]. 高电压技术, 2006, 32(5): 35-41. [21] 许峰. 一种温度特性良好的复合介质电容器的研究[J]. 电力电容器与无功补偿, 2008, 29(2): 33-36. |
|
|
|