|
|
Improved Windowed Interpolation FFT Algorithm and Application for Power Harmonic Analysis |
Wen He, Teng Zhaosheng, Wang Yong, Zeng Bo, Zheng Dan |
Hunan University Changsha 410082 China |
|
|
Abstract In order to decrease the spectral leakage and picket fence effects of the windowed interpolation FFT algorithm for harmonic analysis, the spectral characteristics of fast decay and minimize sidelobe window (FDMS window) are analyzed and the interpolation FFT algorithms for electrical harmonic analysis based on the FDMS window are proposed in this paper. The applicable formulas of the interpolation are obtained by using polynomial curve fit functions, and subsequently calculating burden is dramatically reduced. The simulation results indicate that, with non-synchronized sampling and non-integral period truncation, the proposed method gives the accurate results for weak harmonic extraction and complicate harmonic analysis. The proposed method is applied in the three phase multiply function power energy meter, which verifies the usefulness of the proposed method.
|
Received: 12 April 2010
Published: 20 March 2014
|
|
|
|
|
[1] Zhang Fusheng, Geng Zhongxing, Yuan Wei.The algorithm of interpolating windowed FFT for harmonic analysis of electric power system[J]. IEEE Transactions on Power Delivery, 2001, 16(2): 160-164. [2] Yang Renggang, Xue Hui. A novel algorithm for accurate frequency measurement using transformed consecutive points of DFT[J]. IEEE Transactions on Power Systems, 2008, 23(3): 1057-1062. [3] Chang GW, Cheng IC, Yu-Feng T. Radial-Basis- Function-based neural network for harmonic detection[J]. IEEE Transactions on Industrial Electronics, 2010, 57(6): 2171-2179. [4] Ming Z, Kaicheng L, Yisheng H. A high efficient compression method for power quality applications [J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6): 1976-1985. [5] 赵勇, 沈红, 李建华, 等. 谐波源的识别及其与非谐波源的分离方法[J]. 中国电机工程学报, 2002, 22(5): 84-87. Zhao Yong, Shen Hong, Li Jianhua, et a1. Approach of identification and separetion of harmonic source[J]. Proceedings of the CSEE, 2002, 22(5): 84-87. [6] Hao Qian, Rongxiang Zhao, Tong Chen. Interharmonics analysis based on interpolating windowed FFT algorithm[J]. IEEE Transactions on Power Delivery, 2007, 22(2): 1064-1069. [7] Wen H, Teng Z, Guo S. Triangular self-convolution window with desirable sidelobe behaviors for harmonic analysis of power system[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59 (3): 543-552. [8] Ferrero A, Salicone S, Toscani S. A fast, simplified frequency-domain interpolation method for the evaluation of the frequency and amplitude of spectral components[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60 (5): 1579-1587. [9] 潘文, 钱俞寿, 周鹗. 基于加窗插值FFT的电力谐波测量理论(II)双插值FFT理论[J]. 电工技术学报, 1994, 9(2): 53-56. Pan Wen, Qian Yushou, Zhou E. Power harmonies measurement based on windows and interpolated FFT(II) dual interpolated FFT algorithms[J]. Transactions of China Electrotechnical Society, 1994, 9(2): 53-56. [10] 吴静, 赵伟. 一种用于分析电网谐波的多谱线插值算法[J]. 中国电机工程学报, 2006, 26(8): 55-59. Wu Jing, Zhao Wei. An algorithm of MICA for analyzing harmonics in power system[J]. Proceedings of the CSEE, 2006, 26(8): 55-59. [11] 庞浩, 李东霞, 俎云霄, 等. 应用FFT进行电力系统谐波分析的改进算法[J]. 中国电机工程学报, 2003, 23(6): 50-54. Pang Hao, Li Dongxia, Zu Yunxiao, et a1. An improved algorithm for harmonic analysis of power system using FFT technique [J]. Proceedings of the CSEE, 2003, 23(6): 50-54. [12] Jain V K, Collins W L, Davis D C. High-accuracy analog measurements via interpolated FFT[J]. IEEE Transactions on Instrumentation and Measurement, 1979, 28(2): 113-122. [13] Grandke T. Interpolation algorithms for discrete Fourier transform of weighed signals[J]. IEEE Transactions. on Instrumentation and Measurement, 1983, 32(2): 350-355. [14] Belega D, Dallet D, Petri D. Statistical description of the sine-wave frequency estimator provided by the interpolated DFT method[J]. Measurement, 2012, 45(1): 109-117. [15] Harris F J. On the use of windows for harmonic of analysis with the discrete Fourier transform[J]. Proceedings of IEEE, 1978, 66(1): 51-83. [16] 许珉, 张鸿博. 基于Blackman-harris窗的加窗FFT插值修正算法[J]. 郑州大学学报(工学版), 2005, 26(4): 99-101. Xu Min, Zhang Hongbo. The correction algorithm based on the Blackman-Harris windows and interpolated FFT[J]. Journal of Zhengzhou University (Engineering Science), 2005, 26(4): 99-101. [17] Rife D C, Vincent G A. Use of the discrete Fourier transform in the measurement of frequencies and levels of tones[J]. The Bell System Technical Journal, 1970, 49(2): 197-228. [18] 曾博, 滕召胜, 高云鹏, 等. 基于Rife-Vincent 窗的高准确度电力谐波相量计算方法[J]. 电工技术学报, 2009, 24(8): 154-159. Zeng Bo, Teng Zhaosheng, Gao Yunpeng, et al. An accurate approach for power harmonic phasor calculation based on rife-vincent window[J]. Transactions of China Electrotechnical Society, 2009, 24(8): 154-159. [19] Nuttall A H. Some windows with very good sidelobe behavior [J]. IEEE Transactions on Acoustics Speech Signal Processing, 1981, ASSP- 29(1): 84-91. [20] Offelli C, Petri D. Interpolation techniques for real-time multi-frequency waveform analysis[J]. IEEE Transactions on Instrumentation and Measurement, 1990, 39(1): 106-111. [21] 卿柏元, 滕召胜, 高云鹏, 等. 基于Nuttall窗双峰插值FFT的高精度电力谐波分析方法[J]. 中国电机工程学报, 2008, 28(2): 48-52. Qing Baiyuan, Teng Zhaosheng, Gao Yunpeng, et a1. An approach for electrical harmonic analysis based on Nuttall window double-spectrum-line interpolation FFT [J]. Proceedings of the CSEE, 2008, 28(2): 48-52 . [22] 温和, 滕召胜, 黎福海, 等. 改进加窗频谱峰值拟合算法及谐波分析应用[J]. 电工技术学报, 2011, 26(10): 8-15. Wen He, Teng Zhaosheng, Li Fuhai, et al. Improved windowed spectral-peaks polynomial fitting algorithm and its application in power harmonic analysis[J]. Transactions of China Electrotechnical Society, 2011, 26(10): 8-15. [23] 温和, 滕召胜, 王一, 等. 基于三角自卷积窗的介损角高精度测量算法[J]. 电工技术学报, 2009, 24(2): 164-169. Wen He, Teng Zhaosheng, Wang Yi, et al. High accuracy dielectric loss angle measurement algorithm based on triangular self-convolution window[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 164-169. |
|
|
|