|
Abstract On the basis of the characteristics of transformer loop equation, a novel transformer main protection scheme based on the generalized fundamental power and the difference of loop equation is presented. Theoretically when the transformer is under sound condition the generalized fundamental power and the difference of loop equation are all equal to zero, when faults occur on transformer windings the generalized fundamental power is great and when faults occur on leading wires the difference of loop equation is great. Therefore the new scheme can reflects any faults within the protective zone, and additional inrush identification criterion is needless. There is no need to calculate the resistance and leakage inductance of transformer windings, only the name plate data are used, so the scheme is easy to be realized. The analysis results of test data show that by the novel scheme the mal-operation caused by inrush current can be prevented reliably, there is sufficient sensitivity when internal faults occur, and the performance of the transformer protection is improved considerably.
|
Received: 28 June 2011
Published: 20 March 2014
|
|
|
|
|
[1] 王维俭. 电气主设备继电保护原理与应用[M]. 2版, 北京: 中国电力出版社, 2002. [2] 王维俭. 变压器保护运行不良地反思[J]. 电力自动化设备, 2001, 21(10): 1-3. Wang Weijian. Consideration of improper operation of transformer protection[J]. Electric Power Automation Equipment, 2001, 21(10): 1-3. [3] 孙志杰, 陈云仑. 波形对称原理的变压器差动保护[J]. 电力系统自动化, 1996, 20(4): 42-46. Sun Zhijie, Chen Yunlun. Transformer differential protection based on the characteristic analysis of the first and second half cycle of the magnetizing inrush current[J]. Automation of Electric Power Systems, 1996, 20(4): 42-46. [4] 陈德树, 尹相根, 张哲, 等. 虚拟三次谐波制动式变压器差动保护[J]. 中国电机工程学报, 2001, 21(8): 19-23. Chen Deshu, Yin Xianggen, Zhang Zhe, et al. Virtual third harmonic restrained transformer differential protection principle and practice[J]. Proceedings of the CSEE, 2001, 21(8): 19-23. [5] 王雪. 基于Prony分析的励磁涌流识别方法[J]. 继电器, 2007, 35 (6): 1-4. Wang Xue. An inrush current identification method based on Prony analysis[J]. Relay, 2007, 35(6): 1-4. [6] 马静, 王增平, 徐岩. 用相关函数原理识别变压器励磁涌流和短路电流的新方法[J]. 电网技术, 2005, 29(6): 50-52. Ma Jing, Wang Zengping, Xu Yan. A new method to identify inrush current and short circuit current of transformer based on correlation function[J]. Power System Technology, 2005, 29(6): 50-52 [7] 郑涛, 刘万顺, 肖仕武, 等. 一种基于数学形态学提取电流波形特征的变压器保护新原理[J]. 中国电机工程学报, 2004, 24(7): 18-24. Zheng Tao, Liu Wanshun, Xiao Shiwu, et al. A new algorithm based on the mathematical morphology for power transformer protection[J]. Proceedings of the CSEE, 2004, 24(7): 18-24. [8] 焦邵华, 刘万顺, 刘建飞, 等. 用小波理论区分变压器的励磁涌流和短路电流的新原理[J]. 中国电机工程学报, 1999, 19(7): 1-5. Jiao Shaohua, Liu Wanshun, Liu Jianfei, et al. A new principle of discrimination between inrush current and fault current of transformer based on wavelet[J]. Proceedings of the CSEE, 1999, 19(7): 1-5. [9] Lin X N, Liu P, Malik O P. Studies for identification of the inrush based on improved correlation algorithm[J]. IEEE Transactions on Power Delivery, 2002, 17(4): 901-907. [10] 何奔腾, 徐习东. 波形比较法变压器差动保护原理[J]. 中国电机工程学报, 1998, 18(6): 395-398. He Benteng, Xu Xidong. Protection based on wave comparison[J]. Proceedings of the CSEE, 1998, 18(6): 395-398. [11] Eissa M M. A novel digital directional transformer protection technique based on wavelet packet[J]. IEEE Transactions on Power Delivery, 2005, 20(3): 1830-1836. [12] 张雪松, 何奔腾. 基于误差估计的变压器励磁涌流识别原理[J]. 中国电机工程学报, 2005, 25(3): 94-99. Zhang Xuesong, He Benteng. A new method to identify inrush current based error estimation[J]. Proceedings of the CSEE, 2005, 25(3): 94-99 [13] 毕大强, 张项安, 杨恢宏, 等. 基于非饱和区域波形相关分析的励磁涌流鉴别方法[J]. 电力系统自动化, 2006, 30(6): 16-20. Bi Daqiang, Zhang Xiangan, Yang Huihong, et al. Correlation analysis of waveforms in non-saturation zone based method to identify magnetizing inrush in transformer[J]. Automation of Electric Power Systems, 2006, 30(6): 16-20. [14] Yabe K. Power differential method for discrimination between fault and magnetizing inrush current in transformers[J]. IEEE Transactions on Power Delivery, 1997, 12(3): 1109-1118. [15] 宗洪良, 金华烽, 朱振飞, 等. 基于励磁阻抗变化的变压器励磁涌流判别方法[J]. 中国电机工程学报, 2001, 21(7): 91-94. Zong Hongliang, Jin Huafeng, Zhu Zhenfei, et al. Transformer inrush detection by the variation of magnetizing impendence[J]. Proceedings of the CSEE, 2001, 21(7): 91-94. [16] 王增平. 大型发电机-变压器组保护的研究[D]. 哈尔滨: 哈尔滨工业大学, 1997. [17] 王增平, 马静. 基于等效瞬时漏感与回路方程的变压器保护原理[J]. 中国电机工程学报, 2007, 27(19): 39-44. Wang Zengping, Ma Jing. A novel principle of transformer protection based on equivalent instantaneous leakage inductance and loop equation[J]. Proceedings of the CSEE, 2007, 27(19): 39-44. [18] 王增平, 徐岩, 王雪, 等. 基于变压器模型的新型保护原理的研究[J]. 中国电机工程学报, 2003, 23(12): 54-58. Wang Zengping, Xu Yan, Wang Xue, et al. Study on the novel transformer protection principle based on the transformer model[J]. Proceedings of the CSEE, 2003, 23(12): 54-58. [19] 郝治国, 张保会, 褚云龙. 基于等值回路平衡方程的变压器保护原理[J]. 中国电机工程学报, 2006, 26(10): 67-72. Hao Zhiguo, Zhang Baohui, Chu Yunlong, et al. Study on transformer protection principle based on equivalent circuit equilibrium equation[J]. Proceedings of the CSEE, 2006, 26(10): 67-72. [20] 马静, 王增平, 王雪. 基于等效瞬时漏感的变压器保护新原理[J]. 电力系统自动化, 2006, 30(23): 64-68. Ma Jing, Wang Zengping, Wang Xue. Novel principle of power transformer protection based on equivalent instantaneous leakage inductance[J]. Automation of Electric Power Systems, 2006, 30(23): 64-68. [21] 马静, 王增平, 吴吉. 基于广义瞬时功率的新型变压器保护原理[J]. 中国电机工程学报, 2008, 28(13): 78-83. Ma Jing, Wang Zengping, Wu Zhe. A novel principle of transformer protection based on generalized instantaneous power[J]. Proceedings of the CSEE, 2008, 28(13): 78-83. [22] 王雪, 王增平. 基于有限元法的变压器电感参数计算方法的研究[J]. 电力系统保护与控制, 2009, 37(24): 11-14. Wang Xue, Wang Zengping. An investigation on transformer inductance calculation based on finite element method[J]. Power System Protection and Control, 2009, 37(24): 11-14. [23] 王维俭, 王祥珩, 王赞基. 大型发电机变压器内部故障分析与继电保护[M]. 北京: 中国电力出版社, 2006. [24] 王雪, 王增平. 变压器内部故障仿真模型的设计[J]. 电网技术, 2004, 28(12): 50-52. Wang Xue, Wang Zengping. Study of simulation of transformer with internal faults[J]. Power System Technology, 2004, 28 (12): 50-52. |
|
|