|
|
The Harmonics-Injection SPWM Technique Based on the Inverse Operator Method |
Zheng Chunfang1, 2, Zhang Bo2, Qiu Dongyuan2, Xu Xiangmin2 |
1. GuangDong JiDian Polytechnic Guangzhou 510515 2. College of Electric Engineering in SCUT Guangzhou 510640 |
|
|
Abstract It is difficult to apply natural-sampled harmonic-injection SPWM (HISPWM) method in digital real-time control because its switch-points are expressed in transcendental equations. This paper tries to deduce the analytical expression of the third harmonic injection SPWM’s switch- points by inverse operator method, and gives the precision analysis examples for the analytical solutions of natural-sampled HISPWM’s switchpoints at different carrier ratio. The results show the switch-points can be expressed in a series of adomian polynomials. The precision of HISPWM switch-points is depended on how many adomian polynomial terms are used in the calculation, which provide theoretical basis for the application of HISPWM efficiently in practice.
|
Received: 07 March 2011
Published: 20 March 2014
|
|
|
|
|
[1] Hamman J, Van Der Merwe F S. Voltage harmonics gene-rated by voltage-fed inverters using PWM natural sampling[J]. IEEE Transactions on Power Electronics, 1988, 3(3): 297-302. [2] 张艳莉, 费万民. 基于重心重合原则的数字化多电平SPWM方法[J]. 南京理工大学学报(自然科学版), 2010, 34(3): 209-302. Zhang Yanli, Fei Wanmin. Digitalized multilevel SPWM method based on cg-superpostition theorem [J]. Journal of Nanjing University of Science and Technology(Natural Science), 2010, 34(3): 209-302. [3] 朱良合, 邹云屏, 唐健.基于线性采样的SPWM研究与实现[J]. 电力电子技术, 2010, 44(8): 58-59. Zhu Lianghe, Zou Yunping, Tang Jian. Research and implementation of SPWM based on linear-sampling strategy[J]. Power Electronics, 2010, 44(8): 58-59. [4] 陈增禄, 毛惠丰, 周炳根, 等.SPWM数字化自然采样法的理论及应用研究[J]. 中国电机工程学报, 2005, 25(1): 32-37. Chen Zenglu, Mao Huifeng, Zhou Binggen, et al. A study on theory and application of digital natural sampling based SPWM[J], Proceedings of the CSEE, 2005, 25(1): 32-37. [5] 李扶中, 熊蕊. 一种新型的不对称规则SPWM采样法[J]. 电力电子技术, 2007, 41(4): 93-95. Li Fuzhong, Xiong Rui. A novel sampling mehtod of SPWM with nonsymmetrical rules[J]. Power Electronics, 2007, 41(4): 93-95. [6] 郑春芳, 张波, 丘东元.基于逆算符方法的数字化自然采样SPWM技术[C]. 中国电源学会全国电源技术第17届年会, 2007: 323-326. [7] Bowes S R. Regular-sampled harmonic elimination/ mini-mization PWM techniques[C]. IEEE Applied Power Electronics Conference, 5th Annual, 1990: 532-540. [8] Wen Inne Tsai, York Yih Sun. Design and implementation of three phase HIPWM inverters with instantaneous and average feedback[C]. Proceedings of the IEEE Annual Conference of the Industrial Electronics Society, 1993: 800-805. [9] EI Kassas I A, Hulley L N, Shepherd W. Microprocessor based PWM inverter with third harmonic injection[C]. Proceedings of 1995 International Conference on Power Electronics and Drive Systems, 1995, 2: 555-559. [10] Duran M J, Salas F, Arahal M R. Bifurcation analysis of five-phase induction motor drives with third harmonic injection[J]. IEEE Transactions on Industrial Electronics, 2008, 55(5): 2006-2014. [11] Arahal M R, Duran M J.PI tuning of five-phase drives with third harmonic injection[J]. Control Engineering Practice, 2009, 17(7): 787-797. [12] 李小青, 陈国柱. 基于3次谐波无源注入法的谐波抑制技术[J]. 电力系统自动化, 2007, 31(14): 61-65. Li Xiaoqing, Chen Guohu. An approach to harmonic suppre-ssion based on triple harmonics injection with passive circuit[J]. Automation of Electric Power Systems, 2007, 31(14): 61-65. [13] 谢峰, 关振宏, 吴桢生, 等. 基于3次谐波注入的级联多电平逆变器[J]. 电源技术应用, 2009, 12(02): 7-9. Xie Feng, Guan Zhenhong, Wu Zhensheng, et al. Cascaded multilevel inverter based on three harmonic injection mehtod[J]. Power Supply Technologies an Applications, 2009, 12(02): 7-9. [14] 官二勇, 宋平岗, 叶满园.基于3次谐波注入法的三相四桥臂逆变电源[J]. 电工技术学报, 2005, 20(12): 43-45. Guan Eryong, Song Pinggang, Ye Manyuan. Three-phase inverter with four bridge: legs based on three harmonic injection method[J]. Transactions of China Electrothechnical Society, 2005, 20(12): 43-45. [15] Adomian G. Stochastic system[M]. New York: Academic Press, 1983. [16] Cherruault Y. Convergence of adomian’s method [J]. Kybernets, 1988, 9(2): 31-38. [17] Cherruault Y, Adomian G. Decomposition method: a new proof of convergence [J]. Mathematical and Computer Modelling, 1993, 18(12):103-106. [18] Adomian G. Nonlinear stochastic operator equations [M]. Academic Press, 1986. [19] 刘凤君编著. 正弦波逆变器[M]. 北京: 科学出版社, 2002. [20] 钟福金, 钱昱明, 王晓军. 交流变频调速系统的SPWM波形生成方法的谐波分析[J]. 南京航空航天大学学报, 1994(增刊26): 94-98. Zhong Fujin, Qian Yuming, Wang Xiaojun. Harmornic analysis of methods forming SPWM wave in VVVF System[J]. Transactions of NanJing University of Aeronautics, 1994, (sup26): 94-98. |
|
|
|