|
|
Coordinated Load-Frequency Control System in Interconnected Power System Based on Multivariable Generalized Predictive Control Theory |
Wu Yunliang, Sun Yuanzhang, Xu Jian, Yang Jun |
Wuhan University Wuhan 430072 China |
|
|
Abstract A coordinated load-frequency control system of energy storage device and automatic generation control in an interconnected power system based on multivariable generalized predictive control theory is established. The regional coordinated controller is built as the supervisor controller for energy storage device and automatic generation control. By using the information of wide area measurement system, the regional coordinated controller predicted the trajectories of frequency and tie-line power flow based on the system controlled auto-regressive integrated moving average model and performed the optimized coordination of each frequency modulation device taking the capacity of energy storage device, generation rate constraints, spinning reserve and minimum stable power output of thermal unit into fully consideration. Simulation results indicate that the proposed coordinated load-frequency control system can improve the stability of interconnected power system effectively. Meanwhile, the system is robust to various load disturbances.
|
Received: 25 July 2011
Published: 20 March 2014
|
|
|
|
|
[1] Mercier P, Cherkaoui R, Oudalov A. Optimization a battery energy storage system for frequency control application in an isolated power system[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1469-1477. [2] Sasaki T, Kadoya T, Enomoto K. Study on load frequency control using redox flow batteries[J]. IEEE Transactions on Power Systems, 2004, 19(1): 660-667. [3] 李红梅, 严正. 用可再生能源充电的SMES装置在系统调频中的应用[J]. 电力系统自动化, 2009, 33(15): 94-102. Li Hongmei, Yan Zheng. Application of renewnable energy charged SMES devices in power system frequency regulation[J]. Automation of Electric Power Systems, 2009, 33(15): 94-102. [4] Aditya S K, Das D. Battery energy storage for load frequency control of an interconnected power system[J]. Electric Power System Research, 2001, 58: 179-185. [5] Lu Chunfeng, Liu Chunchang, Wu Chijui. Effect of battery energy storage system on load frequency control considering governor deadband and generation rate constraint[J]. IEEE Transactions on Energy Conversion, 1995, 10(3): 555-561. [6] Abraham R J, Das D, Patra A. Effect of capacitive energy storage on automatic generation control[C]. The 7th International Power Engineering Conference, Singapore, 2005: 1070-1074. [7] Tripathy S C, Juengst K P. Sampled data automatic generation control with superconducting magnetic energy storage in power systems[J]. IEEE Transactions on Energy Conversion, 1997, 12(2): 187-192. [8] Bhatt P, Ghoshal S P, Roy R. Optimized automatic generation control by SSSC and TCPS in coordination with SMES for two-area hydro-hydro power system[C]. International Conference on Advances in Computing, Control and Telecomunication Technologies, Trivandrum, India, 2009: 474-480. [9] Kottick D, Blau M, Edelstein D. Battery energy storage for frequency regulation in an island power system[J]. IEEE Transactions on Energy Conversion, 1993, 8(3): 455-459. [10] 李啸骢, 郭栋, 韦化, 等. 超导磁储能与发电机励磁的多指标非线性协调控制[J]. 中国电机工程学报, 2007, 27(28): 29-33. Li Xiaocong, Guo Dong, Wei Hua, et al. Multi-index nonlinear coordinated control for SMES and generator excitation[J]. Proceedings of the CSEE, 2007, 27(28): 29-33. [11] 李奇安, 李平. 对角CARIMA模型多变量自适应广义预测控制[J]. 控制与决策, 2009, 24(3): 330-341. Li Qian, Li Ping. Constrained multivariable adaptive generalized predictive control for diagonal CARIMA model[J]. Control and Decision, 2009, 24(3): 330-341. [12] 舒迪前. 预测控制系统及其应用[M]. 北京: 机械工业出版社, 1996. [13] 金鸿章, 张晓飞, 李冬松, 等. 零航速减摇鳍永磁同步电机伺服系统广义预测控制[J]. 中国电机工程学报, 2008, 28(36): 87-92. Jin Hongzhang, Zhang Xiaofei, Li Dongsong, et al. Generalized predictive control of PMSM servo system for fin stabilizer at zero speed[J]. Proceedings of the CSEE, 2008, 28(36): 87-92. [14] 童一飞, 金晓明. 基于广义预测控制的循环流化床锅炉燃烧过程多目标优化控制策略[J]. 中国电机工程学报, 2010, 30(11): 38-43. Tong Yifei, Jin Xiaoming. Optimal control of multi-objective in circulating fluidized bed boiler combustion process based on generalized predictive control method[J]. Proceedings of the CSEE, 2010, 30(11): 38-43. [15] Wu Bin, Malik O P. Multivariable adaptive control of synchronous machines in a multimachine power system[J]. IEEE Transactions on Power Systems, 2006, 21(4): 1772-1781. [16] Zachariah K J, Finch J W, Farsi M. Multivariable self-tuning control of a turbine generator system[J]. IEEE Transactions on Energy Conversion, 2009, 24(2): 406-414. [17] Hernandez G A M, Jones D. MIMO generalized predictive control for a hydroelectric power station[J]. IEEE Transactions on Energy Conversion, 2006, 21(4): 921-929. [18] Nocedal J, Wright S J. Numerical optimization[M]. Beijing: Beijing Science Press, 2006. [19] Kunder P. Power system stability and control[M]. New York: McGraw-Hill, 1994. [20] 电力系统调频与自动发电控制编委会. 电力系统调频与自动发电控制[M]. 北京: 中国电力出版社, 2006. |
|
|
|