|
|
Application of “Individual” and “Ensemble” Integration Method inLow Frequency Oscillation Analysis |
Yang Dechang1, Christian.Rehtanz2, Li Yong2, Kay Görner2, Liu Qianjin3 |
1. China Agricultural University Beijing 100083 China 2. Institute of Power Systems and Power Economics TU-Dortmund Dortmund 44227 Germany 3. ABB (China) Beijing 100015 China |
|
|
Abstract With the rapid development of inter-connected power system, the low frequency Oscillation has become one of serious factors threatening the power system stability. Based on the traditional Hilbert-Huang Transform(HHT) and complex singular value decomposition(C-SVD), a novel method which combines “single measured signal” and “ensemble measurement matrix” is proposed to analyze low frequency oscillation problems in this paper. As for the individual measured signal, the energy relationships among intrinsic mode function(IMF) are explored by setting virtual ensemble matrix based on the decomposition results of empirical mode decomposition(EMD). And then the instantaneous parameters of dominant IMF are calculated by Hilbert Transform. As for the ensemble measurement matrix, C-SVD is utilized to extract the dominant proper orthogonal mode(POM). Next, the temporal characteristics and spatial distribution of dominant POM are analyzed. The oscillatory parameters and mode shape of dominant oscillation mode are determined by comparing the calculated results based on two mentioned different methods. The effectiveness of the proposed method is demonstrated by the simulation data and actual data in Europe transmission system.
|
Received: 07 September 2011
Published: 20 March 2014
|
|
|
|
|
[1] 杨德昌, 李勇, C Rehtanz, 等. 智能输电系统在中国的发展[J]. 电网技术, 2010, 34(5): 1-6. Yang Dechang, Li Yong, C Rehtanz, et al. Overview of smart transmission system in China[J]. Power System Technology, 2010, 34(5): 1-6. [2] 刘振亚. 特高压电网[M]. 北京: 中国经济出版社, 2005. [3] 余贻鑫, 李鹏. 大区电网弱互联对互联系统阻尼和动态稳定性的影响[J]. 中国电机工程学报, 2005, 25(11): 7-10. Yu Yixin, Li Peng. The impact of weak interconnection of bulk power grids to damping and dynamic stability of power system[J]. Proceedings of the CSEE, 2005, 25(11): 7-10. [4] 朱方, 汤涌, 张东霞, 等. 我国交流互联电网动态稳定性的研究及解决策略[J]. 电网技术, 2004, 28(15): 1-5. Zhu Fang, Tang Yong, Zhang Dongxia, et al. Study on dynamic stability problems of AC interconnected area power grids in China and their solutions[J]. Power System Technology, 2004, 28(15): 1-5. [5] Kamwa I, Beland J, Trudel G, et al. Wide-area monitoring and control at Hydro-Quebec: Past, present and future[C]. Proceedings of IEEE Power Engineering Society General Meeting, Canada, Montreal, 2006. [6] Peter O' S. The use of sliding spectral windows for parameter estimation in power system disturbance monitoring[J]. IEEE Transactions on Power Systems, 2000, 15(4): 1261-1267. [7] 肖晋宇, 谢小荣, 胡志祥. 电力系统低频振荡在线辨识的改进Prony算法[J]. 清华大学学报(自然科学版), 2004, 44(7): 883-887. Xiao Jinyu, Xie Xiaorong, Hu Zhixiang. Improved Prony method for online identification of low-frequency oscillations in power systems[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(7): 883-887. [8] Rueda J L, Juarez C A, Erlich I. Wavelet-based analysis of power system low-frequency electrome- chanical oscillations[J]. IEEE Transactions on Power System, 2011, 99(2): 1-11. [9] Cai G W, Yang D Y, Jiao Y. et al. Power system low frequency oscillations analysis and parameter determination of adaptive PSS based on stochastic subspace identification[C]. Proceedings in Power and Energy Engineering Conference, Chengdu, China, 2009. [10] 李天云, 高磊, 赵妍. 基于HHT 的电力系统低频振荡分析[J]. 中国电机工程学报, 2006, 26(14): 24-29. Li Tianyun, Gao Lei, Zhao Yan. Analysis of low frequency oscillations using HHT method[J]. Proceedings of the CSEE, 2006, 26(14): 24-29. [11] 穆钢, 史坤鹏, 安军, 等. 结合经验模态分解的信号能量法及其在低频振荡研究中的应用[J]. 中国电机工程学报, 2008, 28(19): 36-41. Mu Gang, Shi Kunpeng, An Jun, et al. Signal energy method based on EMD and its application to research of low frequency oscillation[J]. Proceedings of the CSEE, 2008, 28(19): 36-41. [12] Messina A R. Inter-area oscillations in power systems a non-linear and non-stationary perspective[M]. Berlin: Springer Press, 2009. [13] Messina A R, Vittal V. Extraction of dynamic patterns from wide-area measurements using empirical orthogonal functions[J]. IEEE Transactions on Power Systems, 2007, 22(2): 682-692. [14] Esquivel P. Wide area wave motion analysis using complex empirical orthognal functions[C]. Proceedings of 6th International Conference on Electrical Engineering, Computing Science and Automatic Control, Mexico, Toluca, 2009. [15] Kundur P. Power system stability and control[M]. NewYork: McGraw-Hill, 1994. [16] Tadeja B, Uros G, Bojan M, et al. Wide area measurement system in action[C]. 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 2007. |
|
|
|