|
|
Temperature Rise Numerical Calculation and Correlative Factors Analysis of Gas-Insulated Transmission Lines |
Wu Xiaowen, Shu Naiqiu, Li Hongtao, Li Ling |
Wuhan University Wuhan 430072 China |
|
|
Abstract Investigation of temperature rise calculation of gas-insulated transmission lines (GILs) is critical for the reliability design and operation monitoring. To improve the calculation accuracy of GIL temperature, the finite-element model coupling electromagnetic field, fluid field and thermal field is established, in which the ambient air is also included. Iterative method is used to calculate temperature dependent Joule losses, which are coupled to thermal analysis with element mapping. Multiple species transport technique is employed and the properties of insulating gas and air are combined linearly to realize heat transfer analysis of different fluids in single model. With the proposed model, influence of operation current and ambient temperature on GIL temperature rise is analyzed. Moreover, the effects of the nonlinear thermal physical parameters and the variation of convective heat transfer coefficient are also examined. Concordance between the predicted temperature and experimental results in the literature validates the accuracy of the model. The results provide the correctness as theoretical references for GIL design and temperature monitoring of the conductor.
|
Received: 14 May 2012
Published: 27 November 2013
|
|
|
|
|
[1] Benato R, Carlini E M, Mario C D, et al. Gas-insulated transmission lines in railway galleries[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 704-709. [2] 汤浩, 吴广宁, 范建斌, 等. 直流气体绝缘输电线路的绝缘设计[J]. 电网技术, 2008, 32(6): 65-70. Tang Hao, Wu Guangning, Fan Jianbin, et al. Insulation design of gas insulated HVDC transmission line[J]. Power System Technology, 2008, 32(6): 65-70. [3] Koch H, Schuette A. Gas insulated transmission Lines for high power transmission over long distances[J]. Electric Power System Research, 1998, 44(1): 69-74. [4] Kuroyanagi Y, Toya A, Hayashi T, et al. Construction of 8000A class 275kV gas insulated transmission line[J]. IEEE Transactions on Power Delivery, 1990, 5(1): 14-20. [5] Memita N, Suzuki T, Itaka K, et al. Development and installation of 275kV SF6 gas-insulated transmission line[J]. IEEE Transactions on Power Apparatus and Systems, 1984, 103(4): 691-698. [6] Kunze D, Knierim V, 王学刚. 用于发电中心大规模电力输送的气体绝缘输电线路[J]. 中国电力, 2007, 40(9): 87-90. Kunze D, Knierim V, Wang Xuegang. Gas insulated transmission lines: bulk power transmission in power generation centers[J]. Electric Power, 2007, 40(9): 87-90. [7] Volcker O, Koch H. Insulation coordination for gas-insulated transmission lines (GIL)[J]. IEEE Transactions on Power Delivery, 2001, 16(1): 122-130. [8] Chakir A, Sofiane Y, Aquelet N, et al. Long term test of buried gas insulated transmission lines (GIL)[J]. Applied Thermal Engineering, 2003, 23(13): 1681-1696. [9] Benato R, Dughiero F, Forzan M, et al. Proximity effect and magnetic field calculation in GIL and in isolated phase bus ducts[J]. IEEE Transactions on Magnetics, 2002, 38(2): 781-784. [10] 吴励坚. 大电流母线的理论基础与设计[M]. 北京: 水利水电出版社, 1985. [11] Koch H, Chakir A. Thermal calculations for buried gas-insulated transmission lines (GIL) and XLPE- cable[C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, Columbus, USA, 2001: 857-862. [12] Minaguchi D, Ginuo M, Itaka K, et al. Heat transfer characteristics of gas-insulated transmission lines[J]. IEEE Transactions on Power Delivery, 1986, PWRD- 1(1): 2-9. [13] Benato R, Dughiero F. Solution of coupled electromagnetic and thermal problems in gas- insulated transmission lines[J]. IEEE Transactions on Magnetics, 2003, 39(3): 1741-1744. [14] Kim S W, Kim H H, Hahn S C, et al. Coupled finite- element-analytic technique for prediction of temperature rise in power apparatus[J]. IEEE Transactions on Magnetics, 2002, 38(2): 921-924. [15] Kim J K, Hahn S C, Park K Y, et al. Temperature rise prediction of EHV GIS bus bar by coupled magnetothermal finite element method[J]. IEEE Transactions on Magnetics, 2005, 41(5): 1636-1639. [16] Ho S L, Li Y, Lin X, et al. Calculations of eddy current, fluid, and thermal fields in an air insulated bus duct system[J]. IEEE Transactions on Magnetics, 2007, 43(4): 1433-1436. [17] 谢德馨, 姚缨英, 白保东, 等. 三维涡流场的有限元分析[M]. 北京: 机械工业出版社, 2001. [18] 颜威利, 杨庆新, 汪友华, 等. 电气工程电磁场数值分析[M]. 北京: 机械工业出版社, 2005. [19] 李伟力, 仝世伟, 程鹏. 离网型永磁同步发电机电磁场和温度场数值计算与分析[J]. 中国电机工程学报, 2010, 30(30): 107-113. Li Weili, Tong Shiwei, Cheng Peng. Calculation and analysis of electromagnetic and temperature fields in off-grid type permanent magnet synchronous generator[J]. Proceedings of the CSEE, 2010, 30(30): 107-113. [20] 丁祖荣. 流体力学[M]. 北京: 高等教育出版社, 2003. [21] Zhang Y J, Ruan J J, Huang T, et al. Calculations of temperature rise in air-cooled induction motors through 3-D coupled electromagnetic fluid-dynamical and thermal finite-element analysis[J]. IEEE Transactions on Magnetics, 2012, 48(2): 1047-1050. [22] 刘志刚, 耿英三, 王建华, 等. 基于流场-温度场耦合计算的新型空心电抗器设计与分析[J]. 电工技术学报, 2003, 18(6): 59-63. Liu Zhigang, Geng Yingsan, Wang Jianhua, et al. Design and analysis of new type air-core reactor based on coupled fluid-thermal field calculation[J]. Transactions of China Electrotechnical Society, 2003, 18(6): 59-63. [23] 路义萍, 陈鹏飞, 邓海燕, 等. 某新型通风方式空冷汽轮发电机转子三维温度场[J]. 电工技术学报, 2010, 25(11): 29-35. Lu Yiping, Chen Pengfei, Deng Haiyan, et al. Temperature field of one air-cooled turbo-generator rotor with new ventilation type[J]. Transactions of China Electrotechnical Society, 2010, 25(11): 29-35. [24] Eteiba M B, Aziz M M A, Shazly J H. Heat conduction problems in SF6 gas cooled-insulated power transformers solved by the finite element method[J]. IEEE Transactions on Power Delivery, 2008, 23(3): 1457-1463. |
|
|
|