|
Abstract This paper overviews various switched flux permanent magnet machines and their design and performance features, with particular emphasis on machine topologies with reduced magnet usage or without using magnet, as well as with variable flux capability.
|
Published: 20 March 2014
|
About author:: Z.Q. Zhu (诸自强), Fellow IEEE, PhD, professor at The University of Sheffield, UK. Major research interests include design and control of brushless permanent magnet machines and drives for applications ranging from automotive to renewable energy. |
|
|
|
[1] Rauch S E, Johnson L J. Design principles of flux-switching alternators[J]. AIEE Trans., 1955, 74III: 1261-1268. [2] Dawson C, Bolton H R. Design of a class of wide-angle limited-rotation rotary actuators[J]. IEE Proc., 1979, 126(4): 345-350. [3] Bolton H R, Shakweh Y. Performance prediction of Laws’s relay actuator[J]. IEE Proc., 1990, 137-B(1): 1-13. [4] Pollock C, Wallace M. The flux-switching motor, a DC motor without magnets or brushes[C]. IEEE Industry Applications Society Annual Meeting, 1999: 1980-1987. [5] Chai K S, Pollock C. Using genetic algorithms in design optimization of the flux switching motor[C]. Int. Conf. on Power Electronics, Machines and Drives, 2002: 540-545. [6] Pollock C, Brackley M. Comparison of the acoustic noise of flux-switching and a switched reluctance drives[J]. IEEE Trans. Industry Applications, 2003, 39(3): 826-834. [7] Pollock C, Pollock H, Barron R, et al. Flux switching motors for automotive applications[J]. IEEE Trans. Industry Applications, 2006, 42(5): 1177-1184. [8] Pollock H, Pollock C, Walter R T, et al. Low cost, high power density, flux-switching machines and drives for power tools[C]. IEEE Industry Applications Society Annual Meeting, 2003: 1451-1457. [9] Pollock C, Pollock H, Brackley M. Electronically controlled flux switching motors: a comparison with an induction motor driving an axial fan[C]. The 29th Annual Conference of the IEEE Industrial Electronics Society, 2003: 2465-2470. [10] Ochije K N, Pollock C. Simulink model of controlled power factor flux switching generator system for embedded power generation[C]. IEEE Industry Applications Society Annual Meeting, 2005: 2657-2664. [11] Ochjie K N, Pollock C. Design/performance of a flux switching generator system for variable speed applications[C]. IEEE Industry Applications Society Annual Meeting, 2005: 1567-1574. [12] Ochije K N, Pollock C. Controlled series compensation of high speed brushless flux switching generators for direct drive variable speed application[C]. IEEE Electric Ship Technologies Symposium, 2007: 408-413. [13] Yi C, Pollock C, Pollock H. A permanent magnet flux switching motor for low energy axial fans[C]. IEEE Industry Applications Society Annual Meeting, 2005: 2168-2175. [14] Mailfert A, Kubler H, Zhou J. Hybrid stepping motors comparative experimental results[C]. Int. Conf. on Electrical Machines, 1987: 781-783. [15] Hoang E, Ben Ahmed A H, Lucidarme J. Switching flux permanent magnet polyphased synchronous machines[C]. 7th European Conf. on Power Electronics and Applications, 1997: 903-908. [16] Hoang E, Gabsi M, Lecrivain M. Influence of magnetic losses on maximum power limits of synchronous permanent magnet drives in flux- weakening mode[C]. IEEE Industry Applications Society Annual Conference, 2000: 299-303. [17] Amara Y, Hoang E, Gabsi M, et al. Design and comparison of different flux-switch synchronous machines for an aircraft oil breather application[C]. The 2nd IEEE Int. Conf. on Signals, Systems, Decision and Information Technology, 2003: 1-7. [18] Hoang E, Lecrivain M, Gabsi M. A new structure of a switching flux synchronous polyphased machine with hybrid excitation[C]. European Conf. Power Electronics and Applications, 2007: 1-8. [19] Hoang E, Lecrivain M, Hlioui S, et al. Hybrid excitation permanent magnet synchronous machines optimally designed for hybrid and full electric vehicles[C]. Int Conf on Power Electronics (ICPE2011) – ECCE-Asia, 2011: TuD1-2. [20] Hoang E, Lecrivain M, Gabsi M. 3-D thermal model of an hybrid excitation flux switching synchronous machine using a 2-D FE method software[C]. Int. Symposium Power Electronics Electrical Drives Automation and Motion (SPEEDAM), 2010: 101-104. [21] Hoang E, Hlioui S, Lecrivain M, et al. Experimental comparison of lamination material case of switching flux synchronous machine with hybrid excitation[C]. European Conf. Power Electronics and Applications, 2009: 1-7. [22] Ojeda X, Li G J, Gabsi M. Fault diagnosis using vibration measurements of a flux-switching permanent magnet motor[C]. IEEE Int. Symp. Industrial Electronics, 2010: 2091-2096. [23] Li G J, Ojeda J, Hoang E, et al. Thermal- electromagnetic analysis of a fault-tolerant dual-star flux-switching permanent magnet motor for critical applications[J]. IET Proc. Electric Power Applications, 2011, 5(6): 503-513. [24] Li G J, Ojeda J, Hoang E, et al. Thermal– electromagnetic analysis for driving cycles of embedded flux-switching permanent-magnet motors[J]. IEEE Trans. Vehicular Technology, 2012, 61(1): 140-151. [25] Zhu Z Q, Pang Y, Howe D, et al. Analysis of electromagnetic performance of flux-switching PM machines by nonlinear adaptive lumped parameter magnetic circuit model[J]. IEEE Trans. Magnetics, 2005, 41(11): 4277-4287. [26] Zhu Z Q, Howe D. Electrical machines and drives for electric, hybrid, and fuel cell vehicles[J]. Proc. IEEE, 2007, 95(4): 746-765, . [27] Zhu Z Q, Chen J T. Advanced flux-switching permanent magnet brushless machines[J]. IEEE Trans. Magnetics, 2010, 46(6): 1447-1453. [28] Zhu Z Q, Pang Y, Hua W, et al. Investigation of end-effect in PM brushless machines having magnets in the stator[J]. J. Applied Physics, 2006, 99(8)08R319: 1-3. [29] Chen Y, Chen Y S, Zhu Z Q, et al. Starting torque of single-phase flux-switching permanent magnet motors[J]. IEEE Trans. Magnetics, 2006, 42(10): 3416-3418. [30] Pang Y, Zhu Z Q, Howe D, et al. Eddy current loss in the frame of a flux-switching permanent magnet motor[J]. IEEE Trans. Magnetics, 2006, 42(10): 3413-3415. [31] Chen Y, Zhu Z Q, Howe D. Three-dimensional lumped parameter magnetic circuit model for analyzing single-phase flux-switching permanent magnet motor[J]. IEEE Trans. Industry Applications, 2008, 44(6): 1701-1710. [32] Zhu Z Q, Chen J T, Howe D, et al. Analysis of a novel multi-tooth flux-switching permanent magnet brushless ac machines for high torque direct drives[J]. IEEE Trans. Magnetics, 2008, 44(11): 4313-4316. [33] Chen J T, Zhu Z Q, Howe D. Stator and rotor pole combination and optimal design of multi-tooth flux-switching PM brushless AC machines[J]. IEEE Trans. Magnetics, 2008, 44(12): 4659-4667. [34] Iwasaki S, Deodhar R, Liu Y, et al. Influence of PWM on the proximity loss in permanent magnet brushless AC machines[J]. IEEE Trans. Industry Applications, 2009, 45(4): 1359-1367. [35] Thomas A S, Zhu Z Q, Jewell G W. Proximity losses study in a high speed flux switching permanent magnet machine[J]. IEEE Trans. Magnetics, 2009, 45(10): 4748-4751. [36] Zhu Z Q, Thomas A S, Chen J T, et al. Cogging torque in flux-switching permanent magnet machines[J]. IEEE Trans. Magnetics, 2009, 45(10): 4708-4711. [37] Thomas A S, Zhu Z Q, Owen R, et al. Multi-phase flux-switching permanent magnet brushless machine for aerospace applications[J]. IEEE Trans. Industry Applications, 2009, 45(6): 1971-1981. [38] Owen R L, Zhu Z Q, Thomas A, et al. Alternate pole wound flux switching permanent magnet brushless AC machines[J]. IEEE Trans. Industry Applications, 2010, 46(2): 790-797. [39] Owen R L, Zhu Z Q, Jewell G W. Novel hybrid- excited flux-switching permanent-magnet machines with iron bridges[J]. IEEE Trans. Magnetics, 2010, 46(6): 1726-1729. [40] Chen J T, Zhu Z Q. Winding configurations and optimal stator and rotor pole combination of flux-switching PM brushless AC machines[J]. IEEE Trans. Energy Conversion, 2010, 25(2): 293-302. [41] Chen J T, Zhu Z Q. Influence of rotor pole number on optimal parameters in flux-switching PM brushless AC machines by lumped parameter magnetic circuit model[J]. IEEE Trans. Industry Applications, 2010, 46(4): 1381-1388. [42] Chen J T, Zhu Z Q. Comparison of all and alternate poles wound flux-switching PM machines having different stator and rotor pole numbers[J]. IEEE Trans. Industry Applications, 2010, 46(4): 1406-1415. [43] Chen J T, Zhu Z Q, Iwasaki S, et al. A novel E-core flux-switching PM brushless AC machine for direct-drive applications[J]. IEEE Trans. Industry Applications, 2011, 47(3): 1273-1282. [44] Chen J T, Zhu Z Q, Iwasaki S, et al. A novel hybrid excited switched-flux brushless AC machine for EV/HEV applications[J]. IEEE Trans. Vehicular Technology, 2011, 60(4): 1365-1373. [45] Chen J T, Zhu Z Q, Iwasaki S, et al. Influence of slot opening on optimal stator and rotor pole combination and electromagnetic performance of flux-switching PM brushless AC machines[J]. IEEE Trans. Industry Applications, 2011, 47(4): 1681-1691. [46] Min W, Chen J T, Zhu Z Q, et al. Optimization and comparison of novel E-core and C-core linear switched flux PM machines[J]. IEEE Trans. Magnetics, 2011, 47(8): 2134-2141. [47] Thomas A S, Zhu Z Q, Jewell G W. Comparison of switched flux and surface mounted permanent magnet generators for high speed applications[J]. Proc. IET, Electrical Systems in Transportation, 2011, 1(3): 111-116. [48] Thomas A S, Zhu Z Q, Jewell G W, et al. Flux-switching PM brushless machines with alternative stator and rotor pole combinations[J]. Journal of Asian Electric Vehicles, 2008, 6(1): 1103-1110. [49] Chen J T, Zhu Z Q, Xia Z P. Coil connections and winding factors in flux-switching PM brushless AC machines[J]. COMPEL: Int. J. for Computation and Mathematics in Electrical and Electronic Engineering, 2011, 30(1): 84-97. [50] Chen Y, Zhu Z Q, Howe D. Rotor eddy current loss in 1-phase high-speed permanent magnet brushless DC motor[C]. Proc. IEEE Industry Application Society Annual Meeting, 2007: 537-543. [51] Pang Y, Zhu Z Q, Howe D, et al. Comparative study of flux-switching and interior permanent magnet machines[C]. Int. Conf. Electrical Machines and Systems(ICEMS2007), 2007: 757-762. CDROM, paper PM3-06. [52] Zhu Z Q, Chen J T, Pang Y, et al. Modelling of end-effect on electromagnetic torque in flux- switching permanent magnet machine[C]. Int. Conf. Electrical Machines and Systems (ICEMS2007), 2007: 943-948. CDROM, paper PMP-36. [53] Zhu Z Q, Pang Y, Chen J T, et al. Analysis and reduction of magnet eddy current loss in flux- switching permanent magnet machines[C]. IET, Power Electronics, Machines and Drives, 2008: 120-124. [54] Pang Y, Zhu Z Q, Howe D, et al. Investigation of iron loss in flux-switching permanent magnet machines[C]. IET, Power Electronics, Machines and Drives, 2008: 460-464. [55] Chen J T, Zhu Z Q, Howe D. A dual-lumped parameter magnetic circuit model accounting for the cross-coupling effect, with particular reference to flux-switching permanent magnet machines[C]. IET, Power Electronics, Machines and Drives, 2008: 111-115. [56] Zhu Z Q, Pang Y, Chen J T, et al. Influence of design parameters on output torque of flux-switching permanent magnet machines[C]. Proc. IEEE Vehicle Power and Propulsion Conference(VPPC), 2008: 1-6. (Digest Book, p.83) [57] Thomas A S, Zhu Z Q, Jewell G W, et al. New 3-phase flux-switching PM brushless machines with alternative stator and rotor pole combinations[C]. Proc. Int. Conf. Elec. Machines and Systems (ICEMS), 2008: 2986-2991. [58] Zhu Z Q, Chen X, Chen J T, et al. Novel linear fault-tolerant flux-switching permanent-magnet machines[C]. Proc. Int. Conf. Elec. Machines and Systems (ICEMS), 2008, paper SMO-48. [59] Owen R L, Zhu Z Q, Jewell G W. Hybrid excited flux-switching permanent magnet machines[C]. 13th European Conf. Power Electronics and Applications, 2009: 1-10. [60] Chen J T, Zhu Z Q, Iwasaki S, et al. Low cost flux-switching brushless AC machines[C]. IEEE Vehicle Power and Propulsion Conf., 2010, paper RT6/95-13475. [61] Chen J T, Zhu Z Q, Iwasaki S, et al. Losses and efficiency in alternate flux-switching permanent magnet machines[J]. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2012, 31(1): 54-70. [62] Zhu Z Q, Liu X. Individual and global optimization of switched flux permanent magnet motors[J]. Journal of Int. Conf. on Electrical Machines and Systems, 2012, 1(1): 32-39. [63] Owen R, Zhu Z Q, Wang J B, et al. Review of variable-flux permanent magnet machines[J]. Journal of Int. Conf. on Electrical Machines and Systems, 2012, 1(1): 23-31. [64] Owen R, Zhu Z Q, Wang J B, et al. Mechanically adjusted variable-flux concept for switched-flux permanent-magnet machines[C]. Int. Conf. Electrical Machines and Systems(ICEMS 2011), 2011: 1-6. [65] Liu H, Zhu Z Q, Mohamed E, et al. Flux-weakening control of PMSM having large winding inductance, accounting for resistive voltage drop and inverter nonlinearities[J]. IEEE Trans. Power Electronics, 2012, 27(2): 942 -952. [66] Zhu Z Q, Azar Z. Torque-speed characteristics of switched flux permanent magnet machines[J]. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 31(1): 22-39. [67] Wang J B, Wang W Y, Atallah K, et al. Design considerations for tubular flux-switching PM machines[J]. IEEE Trans. Magnetics, 2008, 44(11): 4026-4032. [68] Wang J B, Wang W, R Clark, et al. A tubular flux-switching permanent magnet machine[J]. J. Applied Physics, 2008, 103(7): 07F105-07F105-3. [69] Hua W, Cheng M, Zhu Z Q, et al. Comparison of electromagnetic performance of brushless machines having magnets in stator and rotor[J]. J. Applied Physics, 2008, 103(7): 07F124-07F124-3. [70] Hua W, Cheng M, Zhu Z Q, et al. Analysis and optimization of back-EMF waveform of a novel flux-switching PM motor[J]. IEEE Trans. Energy Conversions, 2008, 23(3): 727-733. [71] Hua W, Cheng M, Zhu Z Q, et al. Study on static characteristics of novel flux-switching doubly-salient PM machine[J]. Proc. Chinese Society of Electrical Engineering, 2006, 26(13): 129-134. [72] Hua W, Cheng M, Zhu Z Q, et al. Study on static characteristics of 2-phase flux-switching doubly- salient PM machine[J]. Trans. China Electrotechnical Society, 2006, 21(6): 70-77. [73] Hua W, Zhu Z Q, Cheng M, et al. Comparison of flux-switching and doubly-salient permanent magnet brushless machines[C]. Proc. 8th Int. Conf. Electrical Machines and Systems, 2005: 165-170. [74] Hua W, Cheng M, Zhu Z Q, et al. Design of flux- switching permanent magnet machine considering the limitation of inverter and flux-weakening capability[C]. IEEE Industry Applications Society Annual Conf., 2006: 2403-2410. [75] Hua W, Cheng M, Zhu Z Q, et al. Comparative study of 2-phase flux-switching and doubly-salient permanent magnet brushless machines[C]. Proc. Int. Conf. Elec. Machines(ICEM2006), 2006: 1-6. [76] Yan J, Lin H, Huang Y, et al. Magnetic field analysis of a novel flux switching transverse flux permanent magnet wind generator with 3-D FEM[C]. Power Electronics Specialist Conf., 2009: 332-335. [77] Cheng M, Hua W, Zhang J, et al. Overview of stator- permanent magnet brushless machines[J]. IEEE Trans. Industrial Electronics, 2011, 58(11): 5087-5101. [78] Zhang J, Chen Z, Cheng M. Design and comparison of a novel stator interior permanent magnet generator for direct-drive wind turbines[J]. IET Proc. Renewable Power Generation, 2007, 1(4): 203-210. [79] Zhang J, Cheng M, Chen Z. Investigation of a new stator interior PM machine[J]. IET Proc. Elect. Power Appl., 2008, 2(2): 77-87. [80] Zhang J, Cheng M, Chen Z, et al. Comparison of stator-mounted permanent-magnet machines based on a general power equation[J]. IEEE Trans. Energy Conversion, 2009, 24(4): 826-834. [81] Zhao W, Cheng M, Hua W, et al. Back-EMF harmonic analysis and fault-tolerant control of flux-switching permanent-magnet machine with redundancy[J]. IEEE Trans. Industrial Electronics, 2011, 58(5): 1926-1935. [82] Zhao W, Cheng M, Hua W, et al. Post-fault operation of redundant flux-switching permanent-magnet motors using harmonic injected current[C]. Int. Conf. Electrical Machines and Systems, 2010: 868-872. [83] Zhao W, Cheng M, Hua W, et al. Remedial operation of a fault-tolerant flux-switching permanent magnet motor for electric vehicle applications[C]. IEEE Vehicle Power and Propulsion Conf., 2010: 1-6. [84] Zhao W, Cheng M, Chau K T, et al. A new modular flux-switching permanent-magnet machine using fault-tolerant teeth[C]. 14th Biennial IEEE Conf. Electromagnetic Field Computation, 2010: 1. [85] Zhao W, Cheng M, Hua W, et al. A redundant flux-switching permanent magnet motor drive for fault-tolerant applications[C]. IEEE Vehicle Power and Propulsion Conference, 2008: 1-6. [86] W Zhao, Cheng M, Hua W, et al. Modeling of flux-switching permanent magnet motor drives using transient field-circuit co-simulation method[C]. Int. Conf. Electrical Machines and Systems, 2008: 4044-4048. [87] Hua W, Cheng M, Zhang G. A novel hybrid excitation flux-switching motor for hybrid vehicles[J]. IEEE Trans. Magnetics, 2009, 45(10): 4728-4731. [88] Zhang G, Cheng M, Hua W, et al. Analysis of the oversaturated effect in hybrid excited flux-switching machines[J]. IEEE Trans. Magnetics, 2011, 47(10): 2827-2830. [89] Zhang G, Cheng M, Hua W. Analysis of flux- switching permanent-magnet machine by nonlinear magnetic network model with bypass-bridges[C]. Int. Conf. Electrical Machines and Systems, 2010: 1787-1791. [90] Dong G P, Cheng M, Hua W. Modeling of a novel hybrid-excited flux-switching machine drives for hybrid electrical vehicles[C]. Int. Conf. Electrical Machines and Systems, 2010: 839-843. [91] Hua W, Cheng M, Lu W, et al. A new stator-flux orientation strategy for flux-switching permanent magnet motor based on current-hysteresis control[J]. Journal of Applied Physics, 2009, 105(7): 07F112- 07F112-3. [92] Hua W, Cheng M, Jia H, et al. Comparative study of flux-switching and doubly-salient PM machines particularly on torque capability[C]. IEEE Industry Applications Society Annual Meeting, 2008: 1-8. [93] Hua W, Cheng M. Cogging torque reduction of flux-switching permanent magnet machines without skewing[C]. Int. Conf. Electrical Machines and Systems, 2008: 3020-3025. [94] Jia H, Cheng M, Hua W, et al. A new stator-flux orientation strategy for flux-switching permanent motor drive based on voltage space-vector[C]. Int. Conf. Electrical Machines and Systems, 2008: 3032-3036. [95] Jia H, Cheng M, Hua W, et al. Investigation and implementation of control strategies for flux- switching permanent magnet motor drives[C]. IEEE Industry Applications Society Annual Meeting, 2008: 1-6. [96] Jia H, Cheng M, Hua W, et al. Torque ripple suppression in flux-switching PM motor by harmonic current injection based on voltage space-vector modulation[J]. IEEE Trans. Magnetics, 2010, 46(6): 1527-1530. [97] Jia H, Cheng M, Hua W, et al. Compensation of cogging torque for flux-switching permanent magnet motor based on current harmonics injection[C]. IEEE Int. Electric Machines and Drives Conf., 2009: 286-291. [98] Hua W, Cheng M. Inductance characteristics of 3-phase flux-switching permanent magnet machine with doubly-salient structure[C]. IEEE Int. Power Electronics and Motion Control Conf., 2006: 1-5. [99] Wang Y, Jin M J, Shen J X, et al. An outer-rotor flux-switching permanent magnet machine for traction applications[C]. IEEE Energy Conversion Congress and Exposition, 2010: 1723-1730. [100] Fei W Z, Shen J X. Novel PM switching flux motors[C]. Proc. 41st Int. Universities Power Eng. Conf., 2006: 729-733. [101] Fei W Z, Shen J X. Comparative study and optimal design of PM switching flux motors[C]. Proc. 41st Int. Universities Power Engineering Conf., 2006: 695-699. [102] Fei W Z, Luk P C K, Shen J X, et al. Permanent- magnet flux-switching integrated starter generator with different rotor configurations for cogging torque and torque ripple mitigations[J]. IEEE Ind. Appli., 2011, 47(3): 1247-1256. [103] Wang Y, Jin M J, Fei W Z, et al. Cogging torque reduction in permanent magnet flux-switching machines by rotor teeth axial pairing[J]. IET Proc. Electric Power Applications, 2010, 4(7): 500-506. [104] Jin M J, Wang Y, Shen J X, et al. Cogging torque suppression in a permanentmagnet flux-switching integrated-starter-generator[J]. IET Proc. Electric Power Applications, 2010, 4(8): 647-656. [105] Fei W, Luk P C K, Xia B, et al. Shen, “Permanent magnet flux switching integrated-starter-generator with different rotor configurations for cogging torque and torque ripple mitigations[C]. IEEE Energy Conversion Congress and Exposition, 2010: 1715-1722. [106] Jin M J, C Wang F, Shen J X, et al. A modular permanent-magnet flux-switching linear machine with fault-tolerant capability[J]. IEEE Trans. Magnetics, 2009, 45(8): 3179-3186. [107] Fei W, Luk P C K, Shen J X, et al. A novel outerrotor permanent-magnet flux-switching machine for urban electric vehicle propulsion[C]. Int. Conf. Power Electronics Systems and Applications, 2009: 1-6. [108] Wang F, Shen J X, Wang Y, et al. A new method for reduction of detent force in permanent magnet flux-switching linear motors[J]. IEEE Trans. Magnetics, 2009, 45(6): 2843-2846.
[109] Wang Y, Huang Z W, Shen J X, et al. Comparison and study of 6/5- and 12/10-pole permanent magnet flux-switching motors considering flux-weakening capability[C]. Int. Conf. Electrical Machines and Systems, 2008: 3262-3265. [110] Wang F, Shen J X, Wang L L, et al. A novel permanent magnet flux-switching linear motor[C]. 4th IET Conf. Power Electronics, Machines and Drives, 2008: 116-119. [111] Fang Z X, Wang Y, Shen J X, et al. Design and analysis of a novel flux-switching permanent magnet integrated-starter-generator[C]. IET Conf. Power Electronics, Machines and Drives, 2008: 106-110. [112] Wang K, Shen J X, Dong S Z. Sensorless control and initial position estimation of permanent magnet flux switching motor[C]. Int. Conf. Electrical Machines and Systems, 2007: 487-491. [113] Huang L, Yu H, Hu M, et al. A novel flux-switching permanent-magnet linear generator for wave energy extraction application[J]. IEEE Trans. Magnetics, 2011, 47(5): 1034-1037. [114] Zulu A, Mecrow B, Armstrong A. A wound-field three-phase flux-switching synchronous motor with all excitation sources on the stator[J]. IEEE Trans. Industry Applications, 2010, 46(6): 2363-2371. [115] Zulu A, Mecrow B C, Armstrong M. Prediction of performance of a wound-field segmented-rotor flux- switching synchronous motor using a dq-equivalent model[C]. Int. Conf. on Electrical Machines, 2010: 1-6. [116] Zulu A, Mecrow B C, Armstrong M. Topologies for wound-field three-phase segmented-rotor flux- switching machines[C]. IET Int. Conf. Power Electronics, Machines and Drives (PEMD 2010), 2010: 1-6. [117] Raminosoa T, Gerada C, Galea M. Design considerations for a fault-tolerant flux-switching permanent-magnet machine[J]. IEEE Trans. Industrial Electronics, 2011, 58(7): 2818-2825. [118] Raminosoa T, Gerada C. A comparative study of permanent magnet-synchronous and permanent magnet-flux switching machines for fault tolerant drive systems[C]. IEEE Energy Conversion Congress and Exposition, 2010: 2471-2478. [119] Raminosoa T, Gerada C. Novel fault tolerant design of flux switching machines[C]. 5th IET Int. Conf. Power Electronics, Machines and Drives, 2010: 1-6. [120] Raminosoa T, Gerada C. Fault tolerant winding technology comparison for flux switching machine[J]. Int. Conf. Electrical Machines, 2010: 6 pages. [121] Chen A, Nilssen R, Nysveen A. Investigation of a three-phase flux-switching permanent magnet machine for downhole applications[C]. Int. Conf. Electrical Machines, 2010: 5 pages. [122] Chen A, Nilssen R, Nysveen A. Analytical design of a high-torque flux-switching permanent magnet machine by a simplified lumped parameter magnetic circuit model[C]. Int. Conf. Electrical Machines, 2010: 6 pages. [123] Chen A, Rotevatn N, Nilssen R, et al. Characteristic investigations of a new three-phase flux-switching permanent magnet machine by FEM simulations and experimental verification[C]. Int. Conf. Electrical Machines and Systems, 2009: 1-6. [124] Ilhan E, Gysen B L J, Paulides J J H, et al. Analytical hybrid model for flux switching permanent magnet machines[J]. IEEE Trans. Magnetics, 2010, 46(6): 1762-1765. [125] Gysen L J, Ilhan E, Meessen K J, et al. Modeling of flux switching permanent magnet machines with fourier analysis[J]. IEEE Trans. Magnetics, 2010, 46(6): 1499-1502. [126] C J Krop, Encica L, Lomonova E A. Analysis of a novel double sided flux switching linear motor topology[C]. Int. Conf. Electrical Machines, 2010: 5 pages. [127] Ilhan E, Paulides J, Encica L, et al. Tooth contour method implementation for the flux-switching PM machines[C]. Int. Conf. Electrical Machines, 2010: 6 pages. [128] Sulaiman E, Kosaka T, Tsujimori Y, et al. Design of 12-slot 10-pole permanant magnet flux-switching machine with hybrid excitation for hybrid electric vehicle[C]. Int. Conf. Power Electronics, Machines and Drives, 2010: 1-5. [129] Kayano S, Sanada M, Morimoto S, Power characteristics of a permanent magnet flux switching generator for a low-speed wind turbine[C]. Int. Power Electronics Conf., 2010: 258-263. [130] K Lu, Rasmussen P O, Watkins S J, et al. A new low-cost hybrid switched reluctance motor for adjustable-speed pump applications[J]. IEEE Trans. Industry Applications, 2011, 47(1): 314-321. [131] Bangura J F. Design of high-power density and relatively high-efficiency flux-switching motor[J]. IEEE Trans. Energy Conversion, 2006, 21(2): 416-425. [132] Jung Ho L, Tae Hoon L, Seung Chul L. Optimum design criteria for maximum torque density and minimum torque ripple of flux switching motor using response surface methodology[C]. Int. Conf. Electrical Machines and Systems, 2010: 1848-1851. [133] Xu W, Zhu J, Zhang Y, et al. Flux-switching permanent magnet machine drive system for plug-in hybrid electrical vehicle[C]. Australasian Universities Power Engineering Conf., 2010: 1-6. [134] Sarlioglu B, Zhao Y F, Lipo T A. A novel doubly saliency single phase permanent magnet generator[C]. Proc. IEEE Industry Applications Society Annual Meeting, 1994: 9-15. [135] Liao Y, Liang F, Lipo T A. A novel permanent magnet machine with doubly saliency structure[J]. IEEE Trans. Industry Applications, 1995, 3(5): 1069-1078. [136] Deodhar R P, Andersson S, Boldea I, et al. The flux-reversal machine: a new brushless doubly-salient permanent-magnet machine[J]. IEEE Trans. Industry Applications, 1997, 33(4): 925-934. [137] Wang C, Nasar S A, Boldea I. Three-phase flux reversal machine[J]. IEE Proc. -Electric Power Applications, 1999, 146(2): 139-146. [138] Li Y, Lipo T A. A doubly salient permanent magnet motor capable of field weakening[C]. Proc. IEEE Power Electronics Specialists Conf., 1995: 565-571. [139] Fan Y, Chau K T, Niu S. Development of a new brushless doubly fed doubly salient machine for wind power generation[J]. IEEE Trans. Magnetics, 2006, 42(10): 3455-3457. [140] Chau K T, Cheng M, Chan C C. Nonlinear magnetic circuit analysis for a novel stator doubly fed doubly salient machine[J]. IEEE Trans. Magnetics, 2002, 38(5): 2382-2384. [141] Zhang Z H, Zhang Z R, Qing H H. Structure and principle of hybrid excited electrical machines[M]. Beijing: Science Publisher, 2010. [142] Amara Y, Vido L, Gabsi M, et al. Hybrid excitation synchronous machines: energy-efficient solution for vehicles propulsion[J]. IEEE Trans. Vehicular Technology, 2009, 58(8): 2137-2149. [143] Kenjo T, Sugawara A. Stepping motors and their microprocessor controls[M]. Oxford: Clarendon Press, 1994. [144] Hinds W E, Nocito B. The sawyer linear motor[C]. Proc. 3rd Annu. Symposium on Incremental Motion Control Systems and Devices, 1974: W1-10.
|
|
|