|
|
Nonlinear Dynamic Finite Element Model for Magnetostrictive/ Piezoelectric Laminated Composite Magnetoelectric Sensors |
Zhang Na1, 2, Wang Bowen1, Wang Li1, Li Shuying2, Wang Zhihua1, Weng Ling1, Huang Wenmei1, Li Na3 |
1. Hebei University of Technology Tianjin 300130 China 2. Tianjin Polytechnic University Tianjin 300387 China 3. CNPC BoHai Equipment Chengde Petroleum Machinery Co.Ltd Chengde 067000 China |
|
|
Abstract The dynamic equation of magneto-mechanical-electric characteristics for magnetoelectric sensors is founded via Hamilton variational principles, based on the standard square equation of magnetostrictive materials and linear constitutive equation of piezoelectric materials. The magnetic hysteresis and ΔE effect of magnetostrictive materials for the dynamic equation are considered. The output-voltage characteristic of the magnetoelectric sensors is calculated by using the dynamic equation. The calculating results show that the model can predict the change of output voltage with time in different bias and driving magnetic fields. For example, the error between calculating result and experimental one is only 0.9%, in the bias magnetic field of 22.1kA/m, the driving magnetic field of 7.4kA/m and at the frequency of 100Hz. At same time, the model can be used to determine the maximum driving magnetic field of magnetoelectric sensors.
|
Received: 30 December 2010
Published: 20 March 2014
|
|
|
|
|
[1] Toshiyuki Ueno, Toshiro Higuchi. High sensitive and heat-resistant magnetic sensor using magnetostrictive/ piezoelectric laminate composite[J]. IEEE Transactions on Magnetics, 2005, 4(10): 3670-3672. [2] Evangelos Hristoforou, Aphrodite Ktena. Magnetos- triction and magnetostrictive materials for sensing applications[J]. Journal of Magnetism and Magnetic Materials, 2007, 316(2): 372-378. [3] Liu G, Nan C W, Cai N, et al. Dependence of giant magnetoelectric effect on interfacial bonding for multiferroic laminated composites of rare-earth-iron alloys and lead-zirconate-titanate[J]. Journal of Applied Physics, 2004, 95(5): 2660-2664. [4] 万永平, 方岱宁, 黄克智. 磁致伸缩材料的非线性本构关系[J]. 力学学报, 2001, 33(6): 749-757. Wan Yongping, Fang Daining, Huang Kezhi. Nonlinear constitutive relations for magnetostrictive materials[J]. Acta Mechanica Sinica, 2001, 33(6): 749-757. [5] 李淑英, 王博文, 周严, 等. 叠层复合磁致伸缩材料驱动器的输出位移特性[J]. 仪器仪表学报. 2009, 30(1): 71-75. Li Shuying, Wang Bowen, Zhou Yan, et al. Output displacement of actuator based on terfenol-D multilayered composite [J]. Chinese Journal of Scientific Instrument, 2009, 30(1): 71-75. [6] Wan Y P, Zhong Z. Magnetic bias field dependence of the magnetoelectric effect in a magnetoelectric structure: a simple model [J]. Modern Physics Letter B, 2004, 18(18): 963-969. [7] Nicolas Galopin, Xavier Mininger, Frédéric Bouillault, et al. Finite element modeling of magnetoelectric sensors [J]. IEEE Transactions on Magnetics, 2008, 44 (6): 834-837. [8] 曹淑瑛, 王博文, 闫荣格, 等. 超磁致伸缩致动器的磁滞非线性动态模型[J]. 中国电机工程学报, 2003, 23(11):145-149. Cao Shuying, Wang Bowen, Yan Rongge, et al. Dynamic model with hysteretic nonlinearity for a giant magnetostrictive actuator[J]. Proceedings for CSEE, 2003, 23(11): 145-149. [9] Zhen X J, Liu X E. A nonlinear constitutive model for Terfenol-D rods[J]. Journal of Applied Physics, 2005, 97(5): 053901-053908. [10] Bichurin M I, Petrov V M, Srinivasan G. Theory of low frequency magnetoelectric effects in ferromagnetic- ferroelectric layered composites[J]. Journal of Applied Physics, 2002, 92(12): 7681-7683. [11] 李淑英, 王博文, 周严, 等. Terfenol-D/PZT/ Terfenol-D层状复合磁电传感器磁电效应[J]. 电工技术学报, 2010, 25(5): 14-19. Li Shuying, Wang Bowen, Zhou Yan, et al. Magneto- electric effect of Terfenol-D/PZT/Terfenol-D laminate composite sensors[J]. Transactions of China Electrotechnical Society, 2010, 25(5): 14-19. [12] 刘巍. 超磁致伸缩薄膜的磁机耦合特性及其在泳动机器人中的应用[D]. 大连: 大连理工大学, 2006. [13] 张纳, 王博文, 李淑英, 等. 基于磁场传感器的层状磁电复合材料动态特性的有限元模型研究[J]. 仪器仪表学报, 2010, 31(7): 1528-1534. Zhang Na, Wang Bowen, Li Shuying, et al. Finite element model of dynamic characteristics for layered magnetoelectric composites based on magnetic sensor[J]. Chinese Journal of Scientific Instrument, 2010, 31(7): 1528-1534. |
|
|
|