|
|
Parallel Algorithm of Dynamic Optimal Power Flow Based on Improved Multiple Centrality Corrections Decoupling Interior Point Method |
Jian Jinbao1, 2, Yang Linfeng1, 3, Quan Ran1 |
Guangxi University Nanning 530004 China |
|
|
Abstract This paper presents a new parallel algorithm to solve dynamic optimal power flow (DOPF) based on the methods of improved multiple centrality corrections (MCC) and decoupling. A parallel decoupling-factorization-substitution method for the correction equation of DOPF is proposed by integrating interior point method (IPM) framework and the block arrow correction equation, and then, the methods of dynamic increasing step length and adaptive corrections are given. A longer iteration step length and a better central point, which can be obtained by the proposed algorithm, give on the reduction in the number of iterations and savings in computing time than IPM. Most of operations in proposed method can be processed in parallel with decoupling. The sequential simulation results for systems that range in size from 6 to 118 buses show that the proposed method is fast and robust, and the simulations in multi-core cluster show that the method is very promising for large scale DOPF problems due to its excellent speed up and scalability.
|
Received: 13 July 2010
Published: 20 March 2014
|
|
|
|
|
[1] Xie K, Song Y H.Dynamic optimal power flow by interior point methods[J]. IEE Proceedings-Generation, Transmission and Distribution, 2001, 148(1): 76-84. [2] 王永刚, 韩学山, 王宪荣, 等. 动态优化潮流[J]. 中国电机工程学报, 1997, 17(3):195-198. [3] 覃智君, 阳育德, 吴杰康. 矢量化动态最优潮流计算的步长控制内点法实现[J]. 中国电机工程学报, 2009, 29(7):52-58. [4] 陈金富, 陈海焱, 段献忠. 含大型风电场的电力系统多时段动态优化潮流[J]. 中国电机工程学报, 2006, 26(3): 31-35. [5] Wei H, Sasaki H, Kubokawa J, et al. An interior point nonlinear programming for optimal power flow problems with a novel data structure[J]. IEEE Transactions on Power Systems, 1998, 13(3): 870-877. [6] Patra S, Goswami S K. Optimum power flow solution using a non-interior point method[J]. International Journal of Electrical Power & Energy Systems, 2007, 29(2): 138-146. [7] Wu Y C, Debs A S, Marsten R E. A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows[J]. IEEE Transactions on Power Systems, 1994, 9(2): 876-883. [8] 余娟, 颜伟, 徐国禹, 等. 基于预测-校正原对偶内点法的无功优化新模型[J]. 中国电机工程学报, 2005, 25(11): 146-151. [9] Torres G L, Quintana V H. On a nonlinear multiple centrality-corrections interior point method for optimal power flow[J]. IEEE Transactions on Power Systems, 2001, 16(2): 222-228. [10] 蔡广林, 张勇军, 任震. 基于非线性多中心校正内点法的最优潮流算法[J]. 电工技术学报, 2007, 22(12): 133-138. [11] 刘盛松, 候志俭, 蒋传文. 基于信赖域内点法的最优潮流算法[J]. 电力系统自动化, 2003, 27(6): 26-30. [12] 刘明波, 李健, 吴捷. 求解无功优化的非线性同伦内点法[J]. 中国电机工程学报, 2002, 22(1): 1-7. [13] 刘方, 颜伟, 徐国禹. 动态最优潮流的预测/校正解耦内点法[J]. 电力系统自动化, 2007, 31(14): 38-42. [14] Qiu W, Flueck A J, Tu F. A new parallel algorithm for security constrained optimal power flow with a nonlinear interior point method[C]. IEEE Power Engineering Society General Meeting, 2005, 1: 447-453. [15] 赖永生, 刘明波. 电力系统动态无功优化问题的快速解耦算法[J]. 中国电机工程学报, 2008, 28(7): 32-39. [16] 缪楠林, 刘明波, 赵维兴. 电力系统动态无功优化并行算法及其实现[J]. 电工技术学报, 2009, 24(2): 150-157. [17] Gondzio J. Multiple centrality corrections in a primal-dual method for linear programming[J]. Computational Optimization and Applications, 1996, 6(2): 137-156. [18] Marco C, Jacek G. Further development of multiple centrality correctors for interior point methods[J]. Computational Optimization and Applications, 2008, 41(3): 277-305. [19] Davis T A. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method[J]. ACM Transactions on Mathematical Software, 2004, 30(2): 165-195. [20] Gondzio J, Sarkissian R. Parallel interior point solver for structure linear programs[J]. Mathematical Programming, 2003, 96(3): 561-584. [21] Matlab Parallel Computing Toolbox 4 [EB/OL]. http://www.mathworks.com/access/helpdesk/help/pdf_doc/distcomp/distcomp.pdf |
|
|
|