|
|
Modeling and Parameter Identification of Turbine-Governor Based on Response Characteristics |
Wu Cheng1, Xu Zheng1, Ni Qiulong2, Gu Zhenghao3 |
1. Zhejiang University Hangzhou 310027 China 2. Zhejiang Electric Grid Company Hangzhou 310007 China 3. Zhejiang Electric Power Test & Research Institute Hangzhou 310014 China |
|
|
Abstract In the long term dynamic simulation of power systems, the accurate modeling of the turbine-governors is an essential. This paper investigates the modeling and parameter identification of turbine-governors by field tests. The typical response characteristics of steam turbines and gas turbines under speed step change tests are analyzed. Based on the result of the analysis, a new turbine-governor model structure, known as the response model, is proposed and its applicable range is also discussed. Then, based on the field test data, the parameters of the response model for a typical steam unit are identified by the simplex method. Later, these parameters are verified by a large frequency disturbance test. Comparison between the simulative curves and the test curves shows that the response model and its identified parameters can simulate the behavior of the turbine-governor under large frequency disturbance correctly.
|
Received: 06 April 2010
Published: 20 March 2014
|
|
|
|
|
[1] Pereira L, Undrill J, Kosterev D, et al. A new thermal governor modeling approach in the WECC[J]. IEEE Transactions on Power Systems, 2003, 18(2): 819-829. [2] Pereira L, Kosterev D, Davies D, et al. New thermal governor model selection and validation in the WECC[J]. IEEE Transactions on Power Systems, 2004, 19(1): 517- 523. [3] Kosterev D. Hydro turbine-governor model validation in Pacific Northwest[J]. IEEE Transactions on Power Systems, 2004, 19(2): 1144-1149. [4] 朱方, 赵红光, 刘增煌, 等. 大区电网互联对电力系统动态稳定性的影响[J]. 中国电机工程学报, 2007, 27(1): 1-7. Zhu Fang, Zhao Hongguang, Liu Zenghuang, et al. The influence of large power grid interconnected on power system dynamic stability[J]. Proceedings of the CSEE, 2007, 27(1): 1-7. [5] 高伟, 李阳海, 黄树红, 等. 600MW汽轮机调速系统试验及辨识研究[J]. 汽轮机技术, 2006, 48(4): 284-286. Gao Wei, Li Yanghai, Huang Shuhong, et al. Experiment and identification research of 600MW steam turbine speed governor system[J]. Turbine Technology, 2006, 48(4): 284-286. [6] 刘辉, 田云峰, 吴涛. 考虑机组协调控制的汽轮机调速器模型及其应用[J]. 电力系统自动化, 2008, 32(22): 103-107. Liu Hui, Tian Yunfeng, Wu Tao. A new turbine governor model including unit plant coordinated control system and its application [J]. Automation of Electric Power Systems, 2008, 32(22): 103-107. [7] 田云峰, 郭嘉阳, 刘永奇. 用于电网稳定性计算的再热凝汽式汽轮机数学模型[J]. 华北电力技术, 2004(11): 33-36. Tian Yunfeng, Guo Jiayang, Liu Yongqi. Reheat condensing steam turbine mathematical model used for computing power grid stability[J]. North China Electric Power, 2004(11): 33-36. [8] 于达仁, 郭钰锋, 王晓娟, 等. 计及回热器蓄热效应的汽轮机动态模型[J]. 中国电机工程学报, 2005, 25(14): 84-88. Yu Daren, Guo Yufeng, Wang Xiaojuan, et al. Dynamic turbine model with regenerator [J]. Proceedings of the CSEE, 2005, 25(14): 84-88. [9] 李伟. PLC水轮机调速器闭环控制技术研究[J]. 电工技术学报, 1997, 12(2): 17-20. Li Wei. PLC-based hydraulic turbine regulator and relative closed-loop control technologies[J]. Transactions of China Electrotechnical Society, 1997, 12(2): 17-20. [10] 王志群, 朱守真, 楼鸿祥, 等. 基于时域分段线性多项式法的大型汽轮机建模和参数辨识[J]. 中国电机工程学报, 2003, 23(4): 128-133. Wang Zhiqun, Zhu Shouzhen, Lou Hongxiang, et al. PLPF based modeling and parameter identifying of large steam turbine in time domain[J]. Proceedings of the CSEE, 2003, 23(4): 128-133. [11] 戴义平, 邓仁纲, 刘炯, 等. 基于遗传算法的汽轮机数字电液调节系统的参数辨识研究[J]. 中国电机工程学报, 2002, 22(7): 101-104. Dai Yiping, Deng Rengang, Liu Jiong, et al. Study on parameter identification for steam turbine DHE governing system based on genetic algorithm[J]. Proceedings of the CSEE, 2002, 22(7): 101-104. [12] 熊光楞. 控制系统数字仿真[M]. 北京: 清华大学出版社, 1982. [13] 林文孚, 胡燕. 单元机组自动控制技术[M]. 2版. 北京: 中国电力出版社, 2008. [14] 肖大雏. 超超临界机组控制设备及系统[M]. 北京: 化学工业出版社, 2008. [15] 王蕊, 刘肇旭, 宋新立, 等. 基于Matlab的大型火电机组一次调频特性仿真[J]. 电网技术, 2009, 33(14): 42-46. Wang Rui, Liu Zhaoxu, Song Xinli, et al. Matlab-based simulations of primary frequency control for large thermal generating units[J]. Power System Technology, 2009, 33(14): 42-46. |
|
|
|