|
|
Research on Long Optical Paths for SF6 Partial Discharge Decomposition Components’ Infrared Detection |
Zhang Xiaoxing1, Ren Jiangbo1, Hu Yaogai1, 2, Tang Ju1, Meng Fansheng1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China 2. Wuhan University Wuhan 430079 China |
|
|
Abstract A close relationship is existed between SF6 partial discharge decomposition components and the insulation condition in gas insulated switchgear(GIS). Monitoring the decomposition components can diagnose the insulated defect of GIS. The SF6 partial discharge decomposition components are low concentration. To enhance the detection limit, a long optical path gas cell is designed based on the White cell, and the essential parts of the equipment are three conjugated spherical mirrors, which gained long optical paths by the light’s multiple reflections in it, reducing the energy dissipation while increasing the optical paths, 20 meters optical length gas cell matching with Fourier transform infrared spectroscopy (FTIR) is developed. Long and short optical paths gas-cells are used to detect the SF6 partial discharge decomposition components. It’s found that the 20 meters’ optical length gas cell’s spectrum has a great gas species, high degree of accuracy and signal-to-noise ratio. 20 meters gas cell can fulfill SF6 partial discharge decomposition components’ quantify research.
|
Received: 20 August 2010
Published: 20 March 2014
|
|
|
|
|
[1] GB/T18867—2002. 电子工业用气体六氟化硫[S]. 2002. [2] 张晓星, 姚尧, 唐炬, 等. SF6放电分解气体组分分析的现状和发展[J]. 高电压技术, 2008, 34(4): 664- 669. Zhang Xiaoxing, Yao Yao, Tang Ju, et al. Actuamity and perspective of proximate analysis of SF6 decomposed products under partial discharge[J]. High Voltage Engineering, 2008, 34(4): 664-669. [3] Chu F Y. SF6 Decomposition in gas-insulated equipment[J]. IEEE Transactions on Electrical Insulation, 1986, 21(5): 693-725. [4] IEC 60480—2004. Guidelines for the checking and treatment of sulfur hexafluoride(SF6) taken from electrical equipment and specification for its re-use[S]. 2004. [5] 张晓星, 任江波, 肖鹏, 等. 检测SF6气体局部放电的多壁碳纳米管薄膜传感器[J]. 中国电机工程学报, 2009, 29(16): 114-118. Zhang Xiaoxing, Ren Jiangbo, Xiao Peng, et al. Multi-wall Carbon Nanotube films sensor applied to SF6 PD detection[J]. Proceedings of the CSEE, 2009, 29(16): 114-118. [6] John U White. Long optical paths of large aperture[J]. Journal of the Optical Society America, 1942, 32(5): 285-288. [7] Briesmeister R A. Long path length temperature- controlled absorption cell for spectroscopic studies of radioactive compounds[J]. Applied Spectroscopy, 1984, 8(1): 35-38. [8] M Piemontesi, L Niemeyer. Surface reactions of SF6 decomposition products[C]. Conference on Electrical Insulation and Dielectric Phenomena, Millbrae, 1996: 585-593. [9] Semen Mchernin. Promising version of the three- objective multi pass matrix system[J]. Optics Express, 2002, 10(2): 104-107. [10] Betty Lise Anderson, Victor Argueta Diaz. Optical cross connect switch based on Tip/Tilt micromirrors in a white cell[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(2): 579-593. [11] Rashmi Mital, Carllyn M Warnky, Betty Lise Anderson. Design and demonstration of an optical true-time-delay device based on an octic-style white cell[J]. Journal of Lightwave Technology, 2006, 24(2): 982-990. [12] Carllyn M Warnky, Rashmi Mital, Betty Lise Anderson. Demonstration of a quartic cell, a free-space true-time-delay device based on the white cell[J]. Journal of Leighwave Technology, 2006, 24(10): 3849-3855. [13] M piemontesi R Pietsch, W Zaengl. Analysis of decomposition products of sulfur hexafluoride in negative dc corona with special emphasis on content of H2O and O2[C]. Conference Record of the 1994 IEEE International Symposium on Electrical Insulation, PA, USA, 1994: 499-503. [14] Kurte R, heise H M, Klockow D. Quantitative infrared spectroscopic analysis of SF6 decomposition products obtained by electrical partial discharges and sparks using PLS-calibrations[J]. Journal of Molecular Structure, 2001, 565: 505-513. [15] Kurte R, Beyer C H, Heise M. Application of infrared spectroscopy to monitoring gas insulated high-voltage equipment: electrode material-dependent SF6 decomposition[J]. Analytical and Bioanalytical Chemistry, 2003, 373(7): 639-646. [16] 唐炬, 李涛, 张晓星, 等. SF6气体分解组分的多功能实验装置研究[J]. 高电压技术, 2008, 34(8): 1583-1588. Tang Ju, Li Tao, Zhang Xiaoxing, et al. Device of dissociation apparatus under partial discharge and gaseous decomposition components analysis system[J]. High Voltage Enginerring, 2008, 34(8): 1583-1588. [17] Braun J M, F Y Chu, Seethapathy R. Characterization of GIS spacers exposed to SF6 decomposition products[J]. IEEE Transactions on Electrical Insulation, 1987, 22(2): 187-193. [18] Sauers I, Ellis H W, Christophorou L G. Neutral decomposition products in spark breakdown of SF6[J]. IEEE Transactions on Electrical Insulation, 1986, 21(2): 111-119. [19] Herron J T. S2F10 formation in computer simulation studies of the breakdown of SF6[J]. IEEE Transactions on Electrical Insulation, 1987, 22(4): 523-525. [20] Sauers I. Sensitive detection of by-products formed in electrically discharged sulfur hexafluoride[J]. IEEE Transactions on Electrical Insulation, 1986, 21(2): 105-110. |
|
|
|