|
|
Generator Leading Phase Ability Model Based on RBF Neural Network |
Wang Chengliang1, 2, Wang Honghua1, Xiang Changming2, Xu Gang2 |
1. Hohai University Nanjing 210098 China 2. Frontier Electric Technology Co. Ltd Nanjing 211102 China |
|
|
Abstract Generator leading phase operation is a kind of economic and effective measures of voltage regulation and power quality improvement. Due to the synchronous generator is a multivariable and strong coupling nonlinear system, it is difficult to obtain satisfactory results by traditional analysis method. This paper proposes a new method of modeling generator leading phase ability based on radial basis function (RBF) neural network. The model with active power and reactive power of generator for input, with generator voltage and power-angle for output, using a 600 MW generator leading phase test data training RBF neural network and testing network generalization ability, the choice of the base wide, the number of neurons in hidden layer in RBF network convergence precision influence are discussed. Research shows that this generator leading phase RBF model set up in the paper has the advantages of high speed and precision, and its performance is superior to the BP neural network model.
|
Received: 01 November 2010
Published: 19 March 2014
|
|
|
|
|
[1] 史家燕, 史源素, 赵肖敏, 等. 发电机工况参数模型及进相运行在线监测[J]. 中国电机工程学报, 2006, 26(11): 139-143. Shi Jiayan, Shi Yuansu, Zhao Xiaomin, et al. The new method of determining the capability of leading phase of generator and realizing the on-line monitoring[J]. Proceedings of the CSEE, 2006, 26(11): 139-143. [2] 张建忠, 万栗, 刘洪志, 等. 大型汽轮发电机进相运行及对电网调压试验研究[J]. 中国电力, 2006, 39(12): 11-15. Zhang Jianzhong, Wan Li, Liu Hongzhi, et al. Study on leading phase operation and voltage regulation test of power network for large steam turbine-generator[J]. Electric Power, 2006, 39(12): 11-15. [3] 郭景斌, 单周平. 凸极同步发电机静稳定边界的解析法和应用[J]. 中国电力, 2000, 33(10): 39-41, 47. Guo Jingbin, Shan Zhouping. Analytic method of the static stable boundary for hydro-generator and its application[J]. Electric Power, 2000, 33(10): 39-41, 47. [4] 董新胜, 宁晓棠, 石海珍. 新疆主电网发电机进相试验与数据分析[J]. 华东电力, 2007, 35(4): 67-70. Dong Xinsheng, Ning Xiaotang, Shi Haizhen. Generator phase advance tests and data analysis for Xinjiang main grids[J]. East China Electric Power, 2007, 35(4): 67-70. [5] 刘金琨. 先进PID控制MATLAB仿真[M]. 2版. 北京: 电子工业出版社, 2004. [6] Rong Xia, Chen Sheng. A new RBF network with boundary value constraints[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(1): 298-303. [7] Meng K, Dong Z Y, Wang D H, et al. A self-adaptive RBF neural network classifier for transformer fault analysis[J]. IEEE Transactions on Power Systems, 2010, 25(3): 1350-1360. [8] 朱承治, 郭创新, 秦杰, 等. 基于DEPSO-RBFNN的变压器表面温度预测模型[J]. 电工技术学报, 2008, 23(6): 37-43. Zhu Chengzhi, Guo Chuangxin, Qin Jie, et al. Prediction of shell temperature for transformers based on DEPSO-RBFNN[J]. Transactions of China Electrotechnical Society, 2008, 23(6): 37-43. [9] 雷肖, 陈清泉, 刘开培, 等. 电动车电池SOC估计的径向基函数神经网络方法[J]. 电工技术学报, 2008, 23(5): 82-87. Lei Xiao, Chan C C, Liu Kaipei, et al. Radial- Based-Function neural network based SOC estimation for eclectic vehicles[J]. Transactions of China Electrotechnical Society, 2008, 23(5): 82-87. [10] 李春祥, 牛东晓, 孟丽敏. 基于层次分析法和径向基函数神经网络的中长期负荷预测综合模型[J]. 电网技术, 2009, 33(2): 99-104. Li Chunxiang, Niu Dongxiao, Meng Limin. A comprehensive model for long-and medium-term load forecasting based on analytic hierarchy process and radial basis function neural network[J]. Power System Technology, 2009, 33(2): 99-104. [11] 夏长亮, 李志强, 王明超, 等. 基于RBF神经网络在线辨识的永磁无刷直流电机单神经元PID模型参考自适应控制[J]. 电工技术学报, 2005, 20(11): 65-69. Xia Changliang, Li Zhiqiang, Wang Mingchao, et al. Single neuron PID model reference DC motors based on RBF neural adaptive control for PM rushless network on-line identifications[J]. Transactions of China Electrotechnical Society, 2005, 20(11): 65-69. [12] Leong T K, Sundararajan N, Saratehandran P. Real-time performance evaluation of the minimal radial basis function network for identification of time varying nonlinear systems[J]. Computers and Electrical Engineering, 2002, 28(2): 103-117. [13] 张秀玲, 宋建军. 基于动态最近邻聚类算法的RBF神经网络及其在MH-Ni电池容量预测中的应用[J]. 电工技术学报, 2005, 20(11): 84-87. Zhang Xiuling, Song Jianjun. RBF neural networks based on dynamic nearest neighbor-clustering algorithm and its application in prediction of MH-Ni battery capacity[J]. Transactions of China Electrotechnical Society, 2005, 20(11): 84-87. [14] 仝卫国, 杨耀权, 金秀章. 基于RBF神经网络的气体流量软测量模型研究[J]. 中国电机工程学报, 2006, 26(1): 66-69. Tong Weiguo, Yang Yaoquan, Jin Xiuzhang. Study on soft-sensing model of the gas flowrate measurement based upon RBF neural network[J]. Proceedings of the CSEE, 2006, 26(1): 66-69. [15] 赵磊, 成永红, 陈小林, 等. 用RBFNN评估发电机主绝缘剩余击穿电压[J]. 高电压技术, 2007, 33(8): 151-154. Zhao Lei, Cheng Yonghong, Chen Xiaolin, et al. Evaluation on residual breakdown voltage of generator insulation by RBFNN[J]. High Voltage Engineering, 2007, 33(8): 151-154. |
|
|
|